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Preface

The Air-Force (and the Department of Defense in
| general) is particularly interested (as evidenced by the fact

| that many of the references used in preparing this thesis

i é were sponsored by Department of Defense agencies) in research
ih robust control systems design since the results are
directly applicable to many of its sophisticated weapon

systems. Several of the laboratories in the Air Force Systems

Commands' Aeronautical Systems Division are helping to sponsor

/ this Air Force Institute of Technology (AFIT) Masters thesis

project. The primary motivation for this project is that

‘many current control systems are and most future control

systems will be, implemented in digital computers and, there-

fore, will be discrete-time controllers (Ref 7). Purthermore,

if robust controllers can be used, there exists the possibility

-~ : of reduced computational and hardware expense.
Thanks are due Professor Peter S. Maybeck for his

invaluable guidance concerning the basic nature of this robust

vy

+ control system-study as well as the final format of this

Ty T

thesis. I would also like to thank the other thesis committee

members, Lt. Col. Carpinella and Capt. Silverthorn, for

comments and guidance during the final preparation of this
) thesis. Special thanks are due to Sandra A., Todd Q., Weston l
k S., and Jodi S. Lloyd, my family, for putting up with me during
the sometimes frustrating but rewarding task of completing this

<€ .
RN ’. thesis.
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Abstract

t
.

! The Doyle and Stein robustness enhancement technique

for continuous-time LQG stochastic controllers was investigated
in application to simple examples and a realistic Apollo

Command Service Module/Lunar Module Thrust Vector Control
-

System that exhibited severe robustness problems in its initial

design. This technique was then extended to discrete-time

systems in two ways. First, the continuous-time controller

to which the Doyle and Stein technigue had been applied was

e
-

discretized using first order approximations. Second, an

approximation to their continuous-time technique was developed

for sampled-data control systems. In\addition, an attempt

TN S e ———

- ’ was made to‘enhance the robustness of sampled-data systems
by directly‘picking the gain of the Kalman filter within the ‘
controller structure based on an approach similar to that
of Doyle and Stein. .

Sampled-data controllers were designed uéing each of these

approaches. The resulting performance analysis for each closed-

loop system was based on the time histories of the mean and

covariance of the "truth model" states and controls as well

as on the eigenvalues of the closed-loop system. In both the

discretized continuous-time and sampled-data cases, sicnificant
steady-state robustness enhancement was observed. Results
for picking the Kalman filter gain directly were inconclusive.

General purpose interactive software for developing robustified {

LQG controllers was alsc produced and documented. ?

ix
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I Introduction

The purpose of this thesis is to demonstrate a syste-
matic procedure to design computationally-efficient, discrete-
time control system algorithms that will perform adequately
(i.e., at least maintain closed-loop system stability) when
vhcertain parameters in the system design models vary
significantly. Such a control algori£hm is said to have
stability robustness or more simply is said to be "robust".
This introduction provides a background for this study, a
summary of recent efforts in the design of robust control

systems, and a discussion of the approach taken in this thesis.

4 Following this, there is a brief discussion of the notation

used in the remainder of this thesis.

-

Background

Stability robustness is a concern in.control systems
since it determines if control systems will Operate in a
stable fashion even though certain design parameters may
change from the nominal values used in the design of the
control system. One reason parameter changes may occur is
that a systems' physical operating characteristics may change
with environmental conditions. For example, aircraft control
systems are designed to operate at or near certain flight
conditions in the flight envelope and must be adjusted when

the operating point changes. Parameter changes may also occur




because they are not known exactly at the time of the

.controller design and/or because during system operation

physical components may fail or may degrade with age or
environmental conditions (Refs 6 and 10).. For instance,

in designing controllers for wing flutter suppression in
aircraft and thrust vector control of missles and spacecraft,
the bending mode description of these flexible vehicles can

not be specified exactly. Thus, when a controller ié designed
based on the noﬁinal‘aescription of these modes, the actual
closed-}ooP system may perform inadequately or become unstable
if the true values are different from the nominal ones. In
addition, characterization of the bending modes may change

as a result of changing loads such as when the fuel supply
decreases. Two additional areas of concern that potentially
affect the gtability robustness of control systems are sensor .
failures and computer wordlength. Systems can be designed so
that a certain number of sensér failures can be tolerated
without causing unstabie control system operation. Another
equally important consideration, computer wordlength, affects
robustness in at least two ways. First, if a control system

is implemented using a computer program, finite computer

wordlength affects the accuracy of any calculations and,
subsequently, the stability. Second, even if the program
results in a stable closed-loop system on one computer, there
are no guérantees that the program will result in a stable

closed~loop system if a different computer with a different
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wordlength is used (Ref 1). Ackerman (Ref 1) and Maybeck
"(Ref 10) discuss still more areas that may affect robustness,
but it is more important at this point to .discuss robustness

itself and to consider why robustness is an important issue.

Robustness. An automatic control system that exhibits

! the property of stability robustness is one in which the closed-

loop system will remain stable should certain system design
\ parameters change from the design values. More precisely,

robustness specifies the finite regions of the design model

around a nominal model in which stable control system operation

is preserved. Although some papers (Refs 6 and 13) deal with
robustness only in regard to parameter variations within the
basic controlled system, robustness actually encompasses all
o possible variations in design models that can affect control |
system stabiiity {Ref 10). For a detailed rigorous discussion

of robustness, see Maybeck (Ref 10). ' 3
S

Importance of Robustness. There are several reasons k
bhy robustness is an important control systeﬁ property. One

reason is that the models used in the control system design

are just that, models! Subsequently, no matter how much effort

e

is put into defining the system model there will always be
variations between the model and the physical system it
represents (Ref 10). 1In addition to not having perfect models,
the physical components of a system tend to degrade with age

or environmental conditions (Ref 6). For either of these two
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reasons, a control system must‘have robustness if it ever is
to attain stable operation.

By defining robustness properties with respect to
various areas of concern, systems or portions of systems that
require additional or different stabilizing efforts can be
pinpointed. For example, certain portions of a control system
might be implemented using adaptive control techniques when
large uncertainties in design parameters exist. Actually,
adaptive control technigues could possibly handle most systems
with uncertain parameters. But, since acdaptive control is
comparatively expensive, a system's robustness can be used

to indicate when the additional expense is warranted. It

" should be pointed out that robust designs generally have some

performance degradation when compared to adaptive designs

(Ref 11} . Ehrthermore; robustness studies can be used to
determine how much of critical control system components

(i.e., actuators, sensors) such as those onboard aircraft or
spacecraft, should be implemented in quadruplex redundancy

to guarantee reliability and stability. The need for expensive
quadruplex redundancy may in some cases be reduced by using
robust control system designs. For example, robust automatic
flight control systems that result in a stable closed-loop

system even though some actuators and/or sensors fail are

much less expensive than control systems that require

guadruplex redundancy (Rei 1j.
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Recent Efforts in Robust Control System Design

Robustness is the subject of several recent articles
in control systems literature. Safonov (Ref 15), for instance,
in a paper pr;sented at the 1979 IEEE Conference on Decision
and Control, proves a theorem based on L2 conic~sector tech-
niques, that leads to a precise quantitative characterization
of feedback sensitivity to large-but-bounded frequency-
dependent plant variations. He points out that an interesting
implication of she theorem is that there exists a fundamental
limit on the amount by which output feedback can reduce a given
plant‘s'sensitivity to frequency-~dependent plant variations.
In an earlier work, Safonov and Athans (Ref 14) discuss the
robustness properties of a restricted class of controllers
with respect to large plant parameterﬁvariations. Specifically,
they suggest that linear-quadratic-Gaussian, controllers have
fhe desirabie robustness properties of full state feedback
controllers (i.e., guaranteed classical gain margins of -6dB
to +004dB and phase margins of +60° on all channels even when
implemented using a Kalman filter for a plané state estimator.

Doyle (Ref 3), however, shows by a simple counter-
example that the results claimed by Safonov and Athans do not
hold in general for the LQ controller-Kalman filter combination.
Since then, Doyle and Stein (Ref 2) developed a technique
that recovers the desirable robustness properties of a full
state “ee~dhack controller that uses a standard LOG controller

in which the Kalman filter gains are adjusted in a particular




fashion (to be discussed 1ateri: In addition to demonstrating
their technique, they also show that other frequently mentioned
techniques to_recover robustness do "not work in general"
unless the techniques drive some observer poles toward stable
plant zeros and the others toward infinity as their technique

does.

Approach

This study will be concerned with extending a particular
technique for designing robust continuous-time controllers to
discrete-time controllers, since the current trends indicate

most future control systems will be implemented in digital

- computers. The technique that will be the basis of this

study 1is propoééd by J.C. Doyle and G. Stein (Ref 2). Their
techniqué ig directly applicable to the design of the robust
continuous~time Linear Quadratic Gaussian (LQG) controllers
with uncertain parameters embedded in the system model. The
basic idea of their technigue is to add pseuéonoise at the

control points of entry (See the Enhancing Robustness in

Continuocus-time Systems section of Chapter II for a discussion

of how this is accomplished). Note that their technique 1is
restricted to linear plants that are both observable and

controllable, have the samé number of inputs as outputs, and

have no transmission zeros in the right half of the s-plane.




In this thesis a relatively simple known system model
with a single uncertain parameter is used as the basis for
design of robust controllers. For this model several different
controllers are developed. First a continuous-time LQG
controller is developed. Next, several different approaches
are taken to adapt Doyle and Stein's procedure to discrete-
time LQG controllers. After this, a procedure described by
Maybeck (Ref 10) for designing robust sampled-data controllers
is used. 1In all casés above, the performance is analyzed
using a covariance analysis. The development of all the
controliers and the performance analysis algorithms is
discussed in detail in Chapter II. The results and conclusions
are discussed in Chapter III.

One of the prihciple by-products of this thesis is
the general®purpose user-oriented interactive computer program .
that has been developed. The program mechanizes the formation
of and the performance analysis of robust LQG controllers.
Appendices A and B describe the program, Appéndix C discusses
some of the considerations that were involved in the programming.
Appendix D contains the software verification description and

Appendix E is a users manual for the program.

Notation
Before leaving this introduction it is necessary to
introduce somc of the notation used in the fcllowine sections

of this thesis. Random variables are indicated by an under

e LTI e s TR e A e st okl PR IR We 2, PE T ey LT W
TR " AN s TR
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- : tilde, i.e., X is the notation for a random variable x. If

‘_- X in this case is also a vector, it will also be underlined,
i.e., Xx. All matrices are capitalized to distinguish them
from vectors and underlined unless they represent a one-
dimensional sguare matrix. All other notational devices will

be introduced as they are needed. Aadditionally, the symbol

‘W." is read as "defined as”.
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Introduction. *

The purpose of this section is to -discuss the approach
taken in this thesis toward designing robust Linear Quadratic
Gaussian (IQG) controllers. In particular, robustness with
Pespect to uncertain parameters embedded in the system model
is the primary concern of this study. Starting with a rela-
tively simple known Eystem model with & single uncertain para-
meter,‘Doyle and Stein's (Ref 2) technique for designing ro-
bust continucus-time LQG controllers is applied and the per-
formance evalnated. Next, several different.zpproaches are
taken to try to adapt Doyle and Stein's procedure to discrete-
time IQG controllers. In addition to discussing the different
controllers developed in this section, the software usea to
implement the design and performance analysis is also dis-
cucsed.

: Trhere are seven major subsections in fhis chapter.
Tirst, the ccentinuous-time IQG ceorntrouller ard performance
analysis is introduced. DNext, the Doyle and Stein techniqgue
for enhancing robustness in continuous-time controllers is
discussed. Then the model to be used in this study is intro-
duced. Following this, the sampled-data 1QG controller and
performance analysis are introduced. Next, the three dif-
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to discrete~time 1LQG controllers are presented. The first

"’ involves simply discretizing the continuous-time controller
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after the Doyle and Stein technique is applied. The second
is a sampled~data controller for the given model in which

2470

Qcont At, thre gd is the strength of the assumed discrete-~-

time dynamics noise input and Q

Qcont 1S thg strength of the

assumed continuous-time dynamics noise input from the Doyle
and Stein. The third approach involves directly picking the
Kalman filter gain XK to achieve robustness without solving a
Riccati equation so as to attain the desired X.

Continuous~Time LQG Controller

The following development of the continuous-time LQG
controller is based on Maybeck (Ref 10).

The LOG controller shown in Fig 2.1 i; an optiﬁgl
controller in the sense that it minimizes the cost function

Jc. -

Wow (£) By (20 (t)

IR

at  (2.1)

ale)| |w (€)W (e, (t)

e

where ﬁ(t) represents a system state at time t, E(t) repre-
sents a set of.controls applied at time t, X. is the cost-
weightiag matrix for the final state, W _{(t) is the cost-
weighting matrix associated with all the states at time ¢,

ﬂuu(t) is the cost-weighting matrix associated with apglying

control inputs at time t, and W,y 2nd Wax are cross terms

u
relating cost for specific states and controls combinations.

T

Note that Exu= Eux‘ Note also that E is the expected value

10
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operator.
| ® For a physical system as in Fig 2.1, the state of
the system at time t is described by

X(t)= F(t) x(t) + B(t) u(t) + G(t) w(t) (2.2)

where w(t) is a zero mean white Gaussian noise output of

strength Q(t). That is

E{wlt) vt + 0] = (t) 8(1) (2.3)

A Kalman filter is used to estimate the mean of x(t}),

conditioned on measurements of the form

(r)

N

H(t) x(£) + v (t) (2.4)

gc(t) is the strength of the zero-mean white Gaussian

measurement noise Xc(t) and is

‘ Efv(t) yi(t + 1)} = R_(£) 6(1) (2.5)
g .
The:estimate is denoted by x(t) and is described by
thé following relationships:
X(t)= F(t) &(t) + B(t) u(t)
: + R0 [z0) - 50) 28] } (2.6)
K(t)= P(t) B (t) RZ'(£) (2.7)
Y P in Eq (2.7) is the associated error covariance and is the
’t solution to the foward Riccati equation
P(t)= F(t) P(t) + P(t) FL(t) + G(t) Q(t) G (t)
- ety BT(t) RZM(6) H(t) B(t) (2.8)
~ ®
12

&
) . A L 5 ORI+ e oy ST o5 e . s L
—— | T T T T TR L e N :mmw m et P TR R BRI 22 - M1 G Ter A Ml 2 S e ‘

e

- -~




%o and P are the initial conditions of differential equations
given in Egs (2.6) and (2.8) respectiyely, where these are
the defining parameters of an a priori Gaussian density
function for §(to)‘

The deterministic controller to be cascaded with the

Kalman filter to form the LQG controller is described by the

following equations:
u*(t)= <GZ(t) x(t) (2.9)

I | T
Gr(E)= W_ () BT (t) K () (2.10)

X
where u*(t) is the optimal control to be applied, gé(t) is

the optimal controller gain matrix and K. (t) is the solution

to the backward Riccati equation with W _ = O.

S e T A ’
-K {t)= E7(t) K_(t) + K (t) E(t) + W __(t)

-1 T
~K  (£) B() W7 () BT (£) K (£) (2.11)

Ko(te)= X¢
(For the case when ﬂxu# O, see the discussion in Appendix C.)
Note that the certainty equivalence principle applies to
Eq (2.9) so that x(t) can be replaced by g(t) in that egquation
when measurements given by (2.4) replace perfect knowledge
of x({t) (Ref 10).

Since there are numerical complexities in handling the
time varying LQG controller and since these can ofter be

neglected in actual implementation, a constant-gain time
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invariant solution with statioﬁéry noise inputs will be used.
That is, F, B, G, H, @ and R, will be constant and the initial
filter transients and final deterministic controller transients
will be ignored during the design of the controller. Therefore,

in this case, the steady state error covariance E will be

used in place of P(t) and steady state gc will be used instead
of K (t). P and K_ are given by (Ref 10)
P=o=rFF+BF +cog -FH R'uE (2.13)
= _ A =T = = , o= -1 T =
_}lc— .9- ..E: .IS.C + KC E. + Hxx Kc E V_q.uu g z(..c (2'14)

Two software routines were written specifically to
handle the Kalman filter and the deterministic optimal Tton-
troller. The flowcharts and source code listings are in
Appendices A and B respectively. Note that many subroutines

called in the software package come from a set of routines

generated by Kleinman (Ref 5) and modified by Floyd (Ref 4).

Continuous~Time Performance Analysis

Since the control systems designed in this study are
stochastic reghlators, the time historie« of the mean and
covariance of the truth model states ét(t) and the generated
controls u(t) are used as the basis of performance analysis.

In the test setup of Fig 2.2, the robustness ¢f each controller
design to plant parameter variations is evaluated by comparing

the mean and covariance time histories when plant paraneter

values in the truth model are varied from those in the controller

design model. The truth model in Fig 2.2 represents the most
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W Truth
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Controller — ~
At

Fig 2.2 Performance Evaluation

complete and accurate mathematical model available to describe
the physical system to be controlled. This is in contrast to
the model upon which the controller is based, which is usually
a mathematical model of much lower dimension so that it can be
readily impgemented in an online controller. Note that if the
system models and/or controllers are nonlinear, a Monte Carlo
simulation analysis would be required instead. Note also that
é time history of the guadratic cost functiog Jo of Eq (2.1)

is of little use since it gives no information as to individual
channel costs (Ref 10).

This test setup is described in detail for the discrete-
time case in Maybeck (Ref 10). The following continuous-time
perfcrmance analysis closely follows that discrete-time devel-
opment where possible. The following subscripts will be
used throughout this development:
controller model

truth model
augmented model

Wt
"
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cx= sitate controller gain
cy= input controller gain
cz= measurement controller gain

The truth modeI dynamics are given by
13 .
%= E¢(t) (%) + Bi(t) nlt) + G (1) we(t) (2.15)

The measurements available to the controller are

2, ()= Hy(t) x,. (1) + v, (%) (2.16)

The initial conditions and strengths of the noises in these

two equations are:

E{u (0= 0 (2.17)
E | (t) wi(s +n) }= gy 6(n) | ;2.18)
= |y (0= ¢ (2.19)
2 ;tm vi(t + 1)) = Ry 6(r) (2.20)
B lgto) - & . (2.21)
E|[ge(0) - 2 | [ze00) - :to]T}= gto' (2.22)

In general, the control input u(t) and the controller
states will be a function of the measurements, %i the con-
troller states, Xo» and the desired inputs, Yg4- It can thus

be written as (Ref 10)

B(1)= Go(t) 5 (3) + 3, (50 g

+ Gy (1) 24(8) (2.234)
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~ - A vt Y

x ()= E (t) x (8) + gcy(t) ¥gt)

+ B, (t) 2, (t) (2.22B)

-

Note that in general, Y5 is not zero but that in the case of
the LQG regulators used in this thesis, Ya is zero.
As stated earlier, the performance analysis provides

time histories of the mean and covariance of

X, (1)
y (e) =T~ (2-24)
) u(t)
For Xa(f), the mean is gya(t), the covariance is gya(t) and
the autocorrelation is !ya(t) {(which is s1mp¥y gya(t) f gya(t)
T
gya(t)).

As in Maybeck (Ref 10), let the cost be described as

-

QJC= E

m
5y W gi] (2.25)
at k=1

where ql......qm are the scalar gquantities of interest and are

linear combinations of Y, given by Q= 95 Ya- For

o T
Eya = }: Wi 9y 9y then
k=1

aJ __ T =
c= E ‘% %a ﬂya ¥a = % tr | Eya Xya‘ (2.26)

at
From these relationships, it can be seen that Eya' and thus

m and P as generated in the performance analysis, will be

—ya ya
of importance in producing J, if desired (Ref 9).
o Now, to characterize the statistics of y, , the statis-

tics of the inernal process X, must be characterized where
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tﬁ. X

.

The first step is to eliminate u and z from the equa-
tions for X, and X.- Note, time arguments will be removed
for compactness wherever it creates no ambiguities. Equation

(2.15) becomes

%= By By +§t(9-cxx * Goy Ya * Gop (Hy Zy +,Vvt))

zc
* Gy W
= (Ey * By Gop B¢ x, * By Box Zo ¥ Bt foy Ya
+ By Gop St * &t 5t (2.28)
° Eq (2.23B) becomes
§c= Ec %C * gcy ¥ * gcz (ﬁt %t * gt) (2‘29)
Letting
W ’
—'v"t f e
Y.,ia- {V.\ 4 30)
=t
then
Q 0
- =t - ”
Qa'{, ,l (2.31)
) Sy
(i oy 2ugmonted gyethem C2Y ve formed cuch that
® %, Eu %o * Ba Yo * Ca e (2.32)
where
18
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B ‘—h*
-
F-«» + .5 g E g"' —G— y
ga__. v t CZ t [ CAl (2.33>
| Bep By E 4
B, G
B,= t ~ey ) (2.34)
B
L =CY
I B, G
=t =t Z
G,= - (2.35)
* L'Q‘ §CZ
The initial conditions for X, are
x.(0) _
B[ x,(@)]: o = % (2.36)
E

-

_ . B o
Bflgafte) - 20 ] [2a(to) - zao] = [ 0 ] (2.37)

2,2l 250
- T . T . )
gxaxa— - l %a §a| ) m_xa Illxa i Exaxa ‘ (2 | 39)
B, ,=E {(za ~m, ) (% - my 3T (2.40)
a%a ~ Xa e a

The time propagation equations of the mean and covariance are

mxaz Ea mx, * Ea I3 (2.51%)
B =P B . +P . Flag g ¢l (2.428)
“a }.a < Zg I'.a g2 a & (SRS U

or alternately
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PR P

=xa & or =x_ "0
oo B T B9 () ar (2.413)
° (o]
(t)= &_(t, t.) E. . (t.) 5(t, t.)
—xaxa -a Q —xaxa o] =a (o)
t T .7
| - + ft 3. (t,7)G, Q G, I_(t, 7) dr (2.42B)
o]

where ga(t, to)‘is the state transition matrix associated with
F_as given in Eq (2.33). This form is more straightforward
for computer implementation when time-invariant systems and
controllers are used, since the integration involved in com-
puting & (%, to) need only be accomplished once. At this

point in Maybeck's (Refl10) discrete-time performance analysis,

ne presents  the means of expressing the cost eguation in terms

of the augmented vectors. & similar derivation is not core

here since, as was mentioned earlier, computing the value of

-the cost function Jc is rarely of practical %nterest.
Recalling that the statistics of In is of particuler

interest, y. can now be related to X  via
Nd ~a

~a

where
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~
n
ey
Y
ot

U

] (2.84)
C

.

and where z has been eliminated from u.
Since y. is a linear cormbination of variables with
o~
known statistics, that is X, ¥4 and Y4o its mean and co-
~

”~
variance can be written as (Ref 9)

Dy, i 9 9 (2.45)
= = + .
r_an [m -] {C‘; H G ] I'“'Xa [G ] *d >

=u ~cz =t -cy =cy
[P
P = Xy Xy X u
Va T P
=X, u ~uu .
[ T AT
=X_X T
Lg-cz Hy —cx ave |8 gcx
+ R 0 G + P
=t {= -C2Z =X,V
Ce Con By Gox) TR
T .7
™ v i 2 G
O G.‘. + T Lh C2 (2.24'6}
- e G AL e G
~cz = ~CX
It is obviously necessary to calculate a value for -Ex v in
a't
order to use Eq (2.46). By definition, Py is
at

Epv,” E|{zl®) -2 ] fg0) - QV&(C)]T‘ (2.47)

Peacilive trat m o= 7, Fa (2.,0L7) can be rewritten as
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© = T O A Y I R 7
, .‘anv+ -—ll %a(-t/ %t\v/ ﬁ;xa\wl #t\t>l
N )
' s , T, _ T
: R EAL Y B - MECHPHL)
; ] ) i
-E g go] -n @ E[f@] @

Note that the expected value in the second term of Eq (2.48)

, is simply the mean of zi, which is zero so that
- ~

. T
By y = Elx () () (2.49)
a’t )
Now, using the solution form of Eq (2.32), gx v becomes
a t
B, .= Bf B.(t, 1) £, (8) ¥i (%)
=x_Vv =a'"' "o’ ma o’ Zt
a t
t
DR NG FRENCS
t
o
A 7
Dot G (M) wy () wp(e) ar | (2.50)
The first term is zero since ga(to) and Xt(t> are assumed
<! independent and the mean of gt(t) is zero. Now after expli-
~ -
citly writing out the augmented mairices, By s
at
T B (1) G . (T}
B, vc Bl [ & (t,7) : © T4
< -X_ VvV &
X a to gcy(f)
G (1) wo(r) + B.(7) G (7Y v (7) -
~ " + ﬂ't t CZ ~t X:(_t aT
cz N (z.51)
N [ 4
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T

= [ s, 0 B B0 v (1 v

dt

T ' T
-+{ G, (1) W (1) vi(t) + B (1) G, (1) v (1) vg(t)

T
B (1) v (1) v (1)
—~Cz -t t (2.52)

The first term in Eg (2.52) is zero since v, (1) is zero-mean
and the only random variable factor in the expression. Balso,
-
the term with G, (1) yt(T) Xz(t) is zero since y, (t) and w, (t)
are assumed to be independent and zero mean. This leaves a
constant matrix multiplying v, (1) !z(t) as in Egq (2.53)

t B (1) G, (1) r

o= [ i e 0 Efyv, (0 viw] ar
at £
o

Bz () ’ )

{2.53)

The factor E v, (1) g{(t) is defined to be R, (t) &8(t - 1)
in Eg (2.5): Now applying the dirac delta sifting proberty ¢
where t is the upper limit of the integration (Ref 8), Egq

(2.53) becomes

B, (t) G, (t)
By v~ Zales ) % R, (t) (2.54)
B __(t)

=cz
The state transition matrix evaluated from time t to time t
is the identity matrix, I. The factor of % in Eq (2.54) is
a result of integrating the dirac delta function over the
range t and t instead of integrating Tt out past time t. The

final result is
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“*1 By (2.55)

=

nf

P
=xX_V
at gcz

.

At this point all necessary computational forms have
been derived for a performance analysis of a linear continuous-
time, time-varying system and controller. The performance
fnalysis software implements a time invariant version of the
general form given above. Accordingly, it requires gcx'

G

gcy’ G, Ecy’.ﬁcz and F, be specified for Eq (2.23) by the

user in addition to the truth model dynamics equation and mea-
surement equation matrices. The flowcharts and Fortran source
code for this software are in Appendices A and B respectively.
As noted above, this is a general performance analysis
routine and can analyze the performance of any continuous-
time controller. It will be used in this study only to char-
acterize ithe performance of several different 1QG regulating

controllers. To put the 1QG regulator into the proper format

C

for this routine, let x_ in Eqs (2.234) and -(2.23B) be the

state estimate & from the Kalman filter sucH that Eq (2.6)

becomes
& . _ \ \
2(_0- Ef‘ EC + .B..f .! + .P}.f (Z_t ﬁ-f EC) (2‘561

The subscript "f" indicates a quantity associated with the
Kalman filter. The optimal control lav for zn 1QG regulator

is u*= -G¥* x

LR implying from Eq (2.23k) that G =-C%, G .= Qs

c
¥:= 0, and gcz= 0. Now substituting this into Eq (2.56), it

becomes

n

Fe X

= %o + E.f (".CL: ?Ec) + }.{.f (.Z.t - Ef X ) R (2.57)

Zc

&
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Matching like guantities from ﬁqs {2.56}) and (2.23B) implies
that for the LQG regulator

.

E.= Eg - Be GX - Kp Hg (2.58)
B,= K¢ (2.59)
. B~ 0 (2.60)

The flowcharts and FORTRAN source code for the software routine

to put the LQG regqulator into this format are in Appendices

A and B respectively.

Enhancing Robustness in Continuous-Time LQOG Controllers

An automatic control system exhibits stability robust-
ness when the closed-loop system remains stable even though
certain sysgém design parameters change from their design
values or when other unmodeled variations occur. More
precisely, robustness specifies the finite regions in parameter
space of the design model around a nominal modelin which
stable closed-loop system operation is preserved. Some recent
papers (Refs 5 and 9) deal with robustness only in regard to
parameter variations within the controlled system plant matrix,
robustness actually encompasses all possible variations in
design models that affect closed-locp system stability (Ref 10).

There are many guarantees of robustness for control
systems désigned using full-state feedback (Ref 10). 1In many
cases, however, full-state feedback is not available or is
impractical. In these cases an observer or state estimator

is often used to supply estimates of all the states. While
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trere are claims about rovusiness of systiems using otservers
in the literature (Refs 12 and 13}, J.C. Doyle (Ref 3 proved
in 1978 that .there are no robustness guarantees in general.
Since then Doyle and Stein (Ref 2) have developed a technigue,
applicable to linear Quadratic Gaussian continuous-time con-
trollers, that recovers some of the robustness properties of
& full-state feedback system. Their simple technique, which
assumes the n-state plant is controllable, observable, and
has no transmisSion zeros in the right half plane, reguires
choosing the gain for the Kalman filter in the controller in
a particular way. |

Doyle and Stein's technique is based oen making the re-
turn difference mappings for full-state feedback controllers
and observer based controllers equal. (See Fig 2.3). When
these mappings, or loop transfer functions, are asymptotically
equal for the control loops broken at the input to the physi-
cal system (point x in Fig 2.3) then the robustness properties
of the full-state feedback controller can be .asymptotically
recovered by the observer based controller (Ref ).

The return difference mappings of Fig (2.3a) and (2.3b)

are identical if the observer dynamics satisfy

K

el r-nrglalae -t e en

If Eer is parameterized as a function of a scalar q , &s gf(q),

veeso I3 N2W01) WILY be camtisllew dkyumpuoilonlly e g if
gf(q)* B W (2.62)
q
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u -
u 1 =
[ EZ(S)
(a)
u X
“oom + ] AR =51 =
1 2 sl-7) H »
e 31(3) A = ( - s —
{ 5 Observer !
l - I
: s - + { 4 t
E(8) L34 (sI-F} K i =
12 i + =t / ]
, ‘ |
| c !
| | .
(v)

Fig 2.3 a) Full-state feedback, b) Observer based implementa-
- tion (Ref 2)

where W is any nonsingular matrix. When this requirement is
implemented using a Kalman filter to insure stable error

dynamics, K.(q) becomes

- -1
K. (q)= B(q) B K] (2.63)

where P(q) is used to replace P in the matrix Riccati Eg

(2.13).

Using their technique involves changing the value of
™

G’ usea in Eg (z.13). The; Celine §  to L:

GQ cT of the system and Q(a) to be their modified Q to be

3

a¢ XL

¢
WC

KRS

deina

(4]

used in place of G Q gT in Eq (2.13. They define
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oio +a®ryB (2.64)

where g is a design parameter and is set as desired. Note

that g= 0 gives Q(q)= Q As q approaches «, the robustness

o
properties of full-state feedback controllers are recovered.
Doyle and Stein state however, that some robustness may be
recovered even for small values of g, i.e., for g= 1, 10,
100. 1In Eg (2.64) the V matrix is also a design parameter
with the stipul&tion”that it must be positive, definite and
symmetric (Ref 1)}). Note that Eg (2.63) physically corresponds
to pseudo-noise being added at the points of entry of u rather
than the entry points of the original dynamics noise w(t).
When Eg (2.64) is the basis of calculating the Kalman
filter gain gf, the steady state covariance equation Eg {(2.13)

cdivided by g° is

Nel !th
ol N
L]
AT
Q Il*ﬂ!
N
N
+
,ﬂ,\@.
[\
\/
1+
]
+
Q !{t)o
N
+
o)
i<
T
3
H

-q" /B \ ERH [P =0 (2.65)
G

then as q + =

<3 > n (2.66)
2 -
q R

and
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z /N .7 -1 . (% - z . .
e (Z VE R E({ )] EXYE (2.€7,
2 h z
o] aQ

e BREr _Bvs (2.68)

; 5 v (g2)-1 (2.69)
_.f-)_.__ / . J

where V

is some sguare root

of R,» Eq (2.69) is a special case of Eg (2,62) so Iz Zollows

that the given 9, adjustment procedure in Eq (2.64) will

achieve the desired robusiness improvement objective (Ref 2).

nis tecrnigue, several 41

)
bh
M

values of g are used, with V= I. Choosging VF I ailcwe selec-

tTive welghting of the pseudonoise added to each siaze 4

Foriran softwere routirie was writien to provide for the zad-
justments irdicatea by Zg (2.64)., The flowcharis end FORTRAK

source code are in kprendices a and B respectively.

h

The model chosen for the tasic of tri

'

w
m
3
[
£,
‘, »
in
ct
3
[}

thrust vectecr conitrol system for the docked corfiguratior of
=rc lvslle Tomrevd ewA Serysrioa Wadete (07000
isodule (L), Naybeck (Ref &) is the source for this mcdel

description and contains a more detailed description. There

is only one uncertain parameter in the system description used
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and that is the natural bendiné'frequency of the docked com-
bination.

The Apollo CSM/IM vehicle is initially aligned using
small attitude control jets. The main engine is then ignited
znd the proper attitude is maintained by the thrust vector
control system (TVCS). In addition to this function, the
TVCS also attempts to counteract any rigid body rotations or
bending motions. This is necessary to minimize the stress
on the docking #unnet between the CSM/IM (Ref 8).

Only the model for the pitch plane with the most signi-

ficant bending mode is used. The rigid body motion for this

system is described by (Ref 8):

o(t)= Tl * dg) g(t) +T1L [é(t) + w(t)] (2.70)
I I »n L4

y

[

™
~)
s
. .

RN
N LY

where

w(t)= rigid body angular velocity with respect
inertial reference frame

€(t)= angular attitude relative to inertial space
T= thrust of engine; 22,C00 ibs

I= pitch moment ofzinertial of the rigid vehicle;
370,000 slug-ft

1= distance between center of mass and engine;
19 ft

¢.= slope of bending mode &t the engine szation;
e .
-.13 radian/ft

a.= displacement of bending mode at engine station;
1.1 £t/1t
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(t)= generalized bending ccordirnai:

oy O

(t)= main engine nozzle angle relative to the CSM
y(t)= awhite noise superimposed on §&(t)
The bending mode dynamics are described by the state
variables vb(t) and q(t); the velocity and position of the
generalized bending coordinate. They are related to the other

System variables by

Y (0)= -0f q(1) - & ag [§(2) v y(t)] (2.72)
§0= 1 () (2.73)

where

a= vehicle aEceleration due to main éngine thrust;
10 ft/sec

w. = the natural frequency of the bending mode; value
is uncertain

Irn acdition, the mzin engine servo-mechanism can be modeled

&s
6 (t)= -1h 6 () + 1 6 (%) - (2.743
com ‘
wrere
0.on° the commanded value of engine gimbal angle;
' output of controller
7= lag time constant with which the engine follows
the command; .1 sec
i éco"(t, ig rnown, for instarice &t & compuied input {sse

seterministic State Augmentation) then 6(t) is known deter-

ministically; otherwise, if & (t) is random, then &(t;

com

will also be random. Note that the peak rate limit of .1
radian/sec will be accounted for in the cost function of the
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optimal controller (Ref 7).

The white noise disturbance %(t) occurs &s vibration
at the bottom_end of the CSM as a result of engine firing.
It is assumed to enter the equations as a random thrust vec-

tor argle. Therefore, the true nozzle angle ic composed of

‘g

a deterministic portion &8(t) and a statistically random por-
#ion y(t). The mean of w(t) is zero and it has a low fre-
quency spectral density of 0.0004 radian2 per cycle per sec-
ond. This disttirbande could cause a lateral velocity of about
2 ft/sec during a 100 second engine firing (Ref 7).

Comtining the above information into a five dimensional

state vector equation, the vehicle dynamics are governed by;

fw(t7] o 0 o0 0.0815 1.13][ @(t)
e(t) 1 0 © 0 0 €(t)
g v (t)=lc o o i a1 lv (v
at v ' ~
q(t) o 0 1 0 0 a(t)
~n »~
5(t) C 0 © o -10 6(t)
5 4 L JL .
"] (1.13
0 o
- - - M Il )\
Ol 6ognlty * [-11 | w(t) (2.75
0 0
10 0
e - . el

By processing Inertial MNeasurement Unit (INU) data
witn & suitatle algorithm, & continuous-time measurement zZ(T.

or a sampled data measurement z(ti) can be obtained:
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g(ti= g(z) + o, alt) + y, (%) (2.764)
z(ts)= (L) + o, a(ty) + y(t,) (2.76B)

where €(t) and q(t) are as before

e(ti)= g(t) at time t= ts
(t.)= %(t) at time t= ti

x(t-)= discrete~time white Gaussian measurement noise
with mean zero and variance 1/12(0.0002)2

-, 2

radilan

(t)= continuocus-time zero mean white Gaussian mea-
surement noise of sirength approximated ty the
strength of g(ti) times at, the sample period

over which the measurements were actually made:
Rc(ti)= R(ti) At

0_= slope of the bending mode at the IMU station;
-0.13 radian/ft

Note the arpproximetion to Rc(ti) is motivated by & derivetion
of the continuous-time IQG controller which starts with a
sampled-data controller and then allewing the sample time <o
zprroach zero (Ref 8).

Ir the rezl system the measurement is made avalilable

once every 0.1 sec. g(t? can be written in a more compact

form, H x(%) + v (t), as

-
g(tﬂ
£%)

At S AP S I AL BN (2.77)
g(t)
6(t)
L
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The following conditioﬁs and a oriori knowledge are
assumed and are consistent with those used by Mavbeck (Ref 3)
in an adaptive controller for this model. Egs (2.78A) through
(2.78D) apply to the truth model, and Egs. (2.79A) and (2.79B)

apply to the controller model.

wy= 0.08 degree/sec (2.78A)
Oo= 0.8 degree {2.78B)
vy, = 0.7 ft/sec (2.78C)
o -
q9.= 0.07 ft (2.78D)
2 2
wp= (10 rad/sec) (2.79A)
=9 (2.79B)

The value of wé in the truth model is set at various values -
90, 100, 11D, 200, 300..... , rad?/sec®. Note the .2 in Eg
(2.792) is the wvalue upon which the controller model is based

and is different from that in the true model. The effect on
controller performance of several different values for *g in
the truth model is evaluated (Ref 8). The cost-weightinc

matrices, as specified in Maybeck (Ref 11} are

4.4(10) 0 0 0 o |
G 185000 0 0 0
W, = 0 0 185000 0 0 {(2.80)
0 o 0 1100 0
| o 0 0 0 165000
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£y [u.u (10)7] (2.81
K= [;%.4(10)/ o o o o] (2.82

The entire system is depicted in Pig 2.4. In Fig 2.4
it is evident that the driving noise w(t) does not enter the
state 6(t). Accordingly, then, only four states can and need
Be estimated by a Kalman filter in the 1QG controller. The

four state models on which the Kalman filter is based is

- -

r r - -1
g(t)1 0 0 0 0.08151 w(t)
glt) 1 0 0 0 €(t)
d = P
at |y, (t) o o o0 | | T (V) '
a(t) ) 0 1 0 g(t)
L o - N - L” .
-~ - -
1.13 1.151
N 0 g
+ s(t) + wit) (z.83)
-11 -11 |~
0 0
L - L .

Trhe deterministic state is handled in the manner described

irn the following section, Deterministic Stzte Zugmentation

section.

Determinicstic State Augmentation

in zome cases, as in the model of zTrne preceding seczicn,
certain states of a controller will be known deterministicelly
as a function of the computed cortrel value. A priori, they
are random, but they are functions of the computed u, which

is not random once computed. If these states are introduced
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into the Kalman filter equatioﬁs, the associated Kalman £il-
ter gain's calculations may become intractable. In particular,
these inputs are not controllable from the entry point of
w(t). It is therefore necessary to remove these states from
the ccntreller design model while generating the Kalman filter.
Following that, they must be augmented again into the controller
model (Ref 11).

Let a controller model and the measurements upon which

it is based be described by

+

1%
1]
e
HES
o
e

+Gw (2.84)

+ (2.85;

RIS
]

H

A%
A<

If there are deterministic states, then the system and measure-

ment equations may be put in forms,

él N i Y L] B, 9 .
s + u + w  (2.86)
X Far Ez2d L% B, &
% :
el g [2] e ,-
%2

by means of appropriate ordering of state variables. The
vector x, of dimension p contains all deterministic states

and the vector X, of dimension m contains the stochastic
states. The zero matrices in the partitioned F and G matrices
indicate that there is no direct noise inputs into states %
znd Ehak Z, is not directly courled into X;- Note that 221

# 0 allows the stochastic states to be functions of the

deterministic states.
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Now to produce arn estimate of Zo 22, a Kalman filter,
for 2 system partitioned as in Eq(2.86), can be determined

using Egs (2.2). through (2.13) so that

A
Ry= Fpp &, + Fpy X, + By u

. + Ko <E -| B Es | {?D (2.88°

=2

Note, the Kalmaq equ%tions require only the m by m 222 matrix
and the m by r G, matrix (where r is the dimension of g) from
Eq f2.86€) in order to compute *the Kalman filter gains.

Once the Kalman filter gains Kr are determined, it is
necessary to reform the complete controller model as in

Eq (2.89)

(2.89]

4
—
= 1o
Hh
[ VS
——
&
'
L
d
~
*

Now the controller will provide values for zll controller
states: known values for the deterministic states and esti-

mates of the stochastic states.

Samvled-Data 1QG Controliler

The following discussion of the sampled-data IQG con-
troller is based on the presentation by Maybeck (Ref10). It
assumes that the underlying physical system to be controlled

can be represented by
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x(ty 1= Bty 00 t3) x(%,) + By(t;) u

-+ A\ ) I4 ht
gd(.tll l'_‘d(ti) \2'9C/
where g(ti+1, ti) is the state transition matrix and gd(ti),

gd(ti) and ¥d(ti) are the discrete-time counterparts of B(t),

G(t) and w(t) described previously for continuous-time systems.

Note, if the underlying physical system is a continuous-time
system as in Fig (2.5), then Eq (2.90) represents the equi-
valent discrete~time-representation of that system as opposed
to an approximate discrete-time representation (Ref 10).

£ sampled-data controller for the system of Fig (2.5)
is an optimal controller in the sense that it minimizeg J in

- Eq (2.91)

T
T E[ B x () Xp xltyy)

N
P I E[2(6g) X(ey) x(eg) ¢ w8 D) uley)
1= ~ ~ ~ ~
T N -
#2208 ste) gtep] )+ T 9 (2.91)
~ ~ i=

In Zq (2.91) Xf is the cost-weighting matrix for the final
state which occurs at the final time .4, g(ti) is the cost-
weighting matrix for the states at time t., g(ti) is the cost-
welghting matrix for applying controls at time t,, §(ti) is
the cost-weighting matrix at time ti relating certain con-
+rol vzlues to certain states, and Jr(ti) is & residual cost.
Note that the applied control.is held constant throughout
each interval between sample times and that no control ié

applied at the final time, tN+1'
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then-Eq (2.90) is an equivelen® discrete-time repre-
sentation of a system, a complete characterization of the
states and cost can be generated by simulianeously integrating

the differential equations, Eq (2.92) througﬁ (2.98) forward

from time t o t.. (Note G,= I for such a representation).
i, ty)= E(t) B(t, t;) (2.92)
B(t, t;)= E(t) B(t, t;) + B(t) (2.93)
§<t, tio= E(%) Q(t, )+ (%, T ET(t)
+ G(t) Q(t) G(x) (2.94)
E(1)= 2508, ty) 1, (8) &(t, ) (2.95)
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(e, t)= 5708, t0 0 (8) E(t, £, + ¥ (t)
B B) dg (8 (1) B(t, 50 (2.96)
S(t, t’i)' 57 (¢, 1) . (8) Bty ty)
+ 80, ;) W (%) (2.97)
. ir(t, )= tr [yxx(t) a(t, tiﬂ (2.98)

Initial conditions for all integrations are 0, except for

g(ti, ti)= I. At the completion of the integration to t.

i+1?
tre desired results are g(ti+l, ti), gd(ti)= §(t1+1' Ty,
Z(ti)= K(ti+1’ ti)’ H(ti)= Q(ti+1’ ti)' §(tl)= §(ti+1’ ti)

and gr(ti)= ir(ti+1’ ti). The integration must be performed
for every sample period, except in the case of a time invar-
iant system model with constant cost-weighting matrices and

stationary hoise inputs with fixed sampling period, where the

integrations need only be performed once. In this later case,

the &, gd and gd matrices in Eq (2.90; and the X, U and

tn

matrices in Eq (2.91) are constant matrices (Ref 10).

ror a sy

O]

tem descrived by EZg (2.90,, the IQG regulator
consists of an optimal deterministic state feedback control-
ler cascaded with 2 sampled-data Kalmen filter as in Fig (2.5).
The Kalman filter provides an estimate of the states. This
ccnditional mean estiimate ﬁ(t;} ig descrited by Zgs (2.994)

through (2.99E).

bemr. et
Z(ti)' i(tl ’ ti-l ) _)_(_(tl_l )+ _:_B_d (-ti—l ) y_(ti_l ) (2. 99A)
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i- i’ ti-1
- - .7

H(t.) P(tD) HY(t.) + R(t.) | % (2.99C)

[; i’ =it = i i ] :

~ <+ ~ - -
. X(e)= X(t]) + K(t;) [gi - H(t,) g(ti)] (2.99D)
+ - -

B(ti)= B(ty) - K(t;) H(t;) P(t)) (2.99E)

- -

The initial conditions necessary for beginning the recursions
indicated by Egs (2.99a) through (2.99E) are the a priori

knowledge of go and Eo’ that is,

x(t )= x ~ (2.1003)

P(t )= (2.100B)

Qd(ti) in Eq (2.99B) represents the covariance of the assumed
zero mean input noise wi(t;), that is,

Q. (t.) t.= t_

T _|=da "1 i J°
B lwg(ty) walty) = : (2.101)
0 €4t

2y in Eq (2.99D) is the measurement available at time t; and

is of the form

%(ti)= Hit;) ¥(ti) + vity) (2.102)

~

where g(ti) is an assumed zero-mean measurement noise of

covariance R(t.,), that is,
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Elyle) v (ty)] = * (2.103)

Note that gd(ti) and ¥(ti) are also assuqed to be independent
of each other. The description of the various matrices and
vectors in Eqs (2.99) through (2.103) parallels the continu-
Qus-time case with the exception that there are now two
values for X and P. The value at t; is the value before the
measurement at Ii' g(ti), is incorporated. The value at t;
incorporates the new information made available by the mea-
surement at time t. (Ref 1G5,

The optimal deterministic controller to be cascaded

. with the Kalman filter in Fig (2.5) is described by

u*(ty)= -GX(t,) x(t;) (2.104)

Eq (2.104) assumes perfect knowledge of 5(ti) at the semple
time. Since the certainty equivalence principle applies,
gfti) can be replaced by ﬁ(t;) when knowledgé of x(t;) comes
;)

from incomplete noise corrurted measurements. gg(t is,

from deterministic 1QG controller theory (Refl0),

. . Y T A -1

T . 7 ‘
.[gd(ti) E (i ) B(tig, 1) + S (ti)](2.105)

where 5C(ti) satisfies the teackward Riccati recursion
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owe

T ..
= 3 \ 4 Y
Kc(ti) ‘é(tl) + _é (ti"‘l' ti) '}‘{'C(ti"’l/ 2\ti+1' T'i)

5T (. .
R E 1IN CTINDR (LAWPRTY

T T oy
+ S (ti)] G2 (t,) » (2.106)
Kc(tN+1)= Xe (2.107)
* Flowcharts and FORTRAN source code required to imple- '

ment the sampled-data 1QG controller appear in Appendices A

and B respectively.

Sampled-Data Performance Analysis

This performance analysis is based on.Fig (2.2), with
the only difference being that a sampled-data controller is
used versus a continuous-time measurement controller. This
performance:analysis scheme is from Maybeck (Ref 10].

In this scheme the truth model is represented vy

e (£)= By (1) x,(8) + Bo(8) u(t) + Gy w (1) (2.108)

and the measurements available to the controller are sampled-

data measurements of the form
= )
%t(ti)f ﬁt(ti’ %t(ti) + gt(ti) (2.109)

The discrete-time controller, which is similar in form

to Eq (2.234) and (2.23B), is
ll-(tj.)= g-cx(ti) ﬁc(ti) * gcz(ti) Zyi
+ gcy(ti) xd(ti) (2.1104)
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(ty,q)= B (%

B Cbiagn B30 2 () + B (%) 24y

X
—C

+ A . FEE PRPCOR
+ E,cy<vi/ N_d(vi/ (2-1-C-,

The primary differences between Egs (2.23) and (2.110) are
that the differential equation is replaced by a difference
equation and that the counterpart to g{t) is written z..as
epposed to g{ti) (Ref 10).

Using a controller as described in Eq (2.110), and an
equivalent discrete-time model for the truth model, the sam-
pled-data performance analysis is very similar to the contin-
uous-time performance analysis where %a(t) and ¥a(t) become
éa(ti) and géti). That is, if in Egs (2.27) through (g.35)

ic(t). gc(t), ét(t), xt(t), zc(t). zt(t), are replaced by

~

éc(t“"l)' zc(ti)’ %‘t(tiﬂ"l)’ %‘t(ti)' E—c(ti"‘l' ti)' Et(tiﬂ: ti)'

1

respectively. Then F_(t) becomes 2_(t ti). B, (%) becomes

i+1’?

By (t,) and G_(t) becomes G, (t.) where the upper left parti-
=d_ "1 “a =d "1

tion in G, is the identity matrix I, since this is an equi-

‘valent discrete-time representation. If the underlying truth

model is a discrete-time system, &n appropriate gd would re-
rlace the 1.
The mean m (ti) and the covariance P (ti) of the

“Xg a

internal process X, are propagated by

\

m (ti+1)= éa(tjﬁl' t.) (ti) + gda(‘ti) h%ihi’

a 1T
(2.1118)

45

iy i

e T o ANt SO 7520 Rueno D



=

»~

.

- T .
=x_ (ti*’l)_ 2( i+41? t ) (tl) g (ti+1, 'vi/
m
+ G (%) (£.) &5 (£.) (2,111%"
. =, a 17 745 1

The mean and covariance of the augmented vector of desired
quantities, Yoo are given as a linear combination of the sta-

tistics of xX_ consistent with the definition of Yo (Ref10):

2a
(t.) : ° (
m_(t.)= m_ (t.)
Y. 1 =X i
a G zfti) Et(ti) ch(ti) a
o)
+ vo{(x.} (z2.2124)
et ti .
gcy(ti)
r 1 0 . .
(t )= Poo(t.)
—y . =x_'"i
a I _Cz(t ) P (t ) gcx(ti) a
[ Uy \ T -
: l '};t(tl "CZ( ) R
9] T
+ R(s) o &o, (30 ] (2.1128) ‘
—cz(-t ) ’

Egs (2.111) and (2.112) will give an accurate descrip-
tion of the desired statistics at the sampled times ti. How-
ever, 1t is often desired to know the statistics at particular

moments between sample times. The differential equation for

y. (z) is
. 30 TE(E) B (6] [0 re.(s)
[T ) ) e
- [%t] 0 0 %(t) ! 0 uy (%)
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oA

Based on Eg (2.113), the mean é (t) ard coveriance & (%]
Ya =¥
are propagzted between sample times by
. D[R By(®)
m (t)= m_ (t) . (2.1144)
Va 0 0 Ya
. F (t) By (%) F1(t) 0
B, (1)= B, (t) + By
- a _O_ Q a a Ez(_t) _Q
T
G, () . () gy(t) 0
= (2.114B)
0 Y

The initial conditions for the sample period beginning at

time t., come from Eq (2.112). Note that no P (t.) terms
i =XV 17

appear in Eq (2.112B) as they do in the continuous-time coun-

terpart, Eq (2.46). This is true when (ti) and za(to) are

Td
zssumed independent of v (t;) (Ref 97.
”
The optimal IQG regulator must be rut into the form

of Eq (2,110B) to be evaluated. The optimal IQG reguletor

‘has the control law

ny
[

Ut
n
S~

u*(1;)= ~Gx(t;) &(¢]) (

Wwith ¥4= ¢ the necessary associations are, from MNaybecz (Ref

10),

™
Jons
—
O
p—

ch(ti)= —Qé(tl) l - }‘—;(tl) E(Tl) (

™
+

—
~1
~. 2

T Y= 0% (%.) K(t. /
G, {ts) Gx(ty) ;(tl). {
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v
- -.\

b Y !

+ ) #(+
Bo(tyyg b90= (200 t5) - By(ty) 9c(°iﬂ

I ~ K(t.) Hit. (2.118,

Bog (t3)= [E(ti4q0 t5) - Bg(ty) €2y

‘K(t.) (2.119)
- gcy= _Q (2.120}
Loy 0 (2.121)

where ﬁhe g, B4 gg and the filter gain K are those associated
with the controller design model.

Since there are minor differences between this per-
formance analysis and the continuous-time performance anal-
ysis, only one software routine was written to accomplish
voin of thede performance analyces. External flags set by

the calling routine indicate to the performance analysis

routine whether it is to perform a continuocus-time or dis-

-crete-time performance analysis. Flowcharts-ané FCRTRAN

source code for the performance analysis appear in Aprencices

~ &nd B respectively.

Doyle and Stein Technigue in Discrete-Time Systems - 1

Tr.is section describes the first approach taken in
thls thesis to try to exterd Doyle and Stein's (Ref 2) tech-
nlguwe I¢r enhancing robustness of centinuous-time IQG conr-
Trollers to sampled-data 1QG controllers.

In this approach, the continuous-time 1LQG developed
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using Doyle and Stein's technigue is merely discretized.
This discretized controller must be put into the

performance analysis format which requires values for gcx(ti),

-

gcz(ti) and gcy(ti) in Eq (2.110A) and Ecﬂti+l' ti), Ecz(ti)

5 . : « .
ané gcy(ti) in Eq (2.110B). Since G*(t) is constant, gcx(ti)
= —0O%* = ~C%*

G. where the control law has become g(ti) GL x ().
Gy, is zero and since y,= 0, so is Ecy' Then for

the controller of Egq (2.23B)

%o (£)= E_(8) x(£) + B (£) 2 (£) + B (t) yq(t) (2.23B)

t in Eg (2.110B) becomes

{
Zottidy)

Bolty)= [T+ (Egtey) ot ) |x (k) + [Bo (k) -2t [z

/

+ [§Cy(ti) At ]zd(ti) (2.122)

whgre At is the sample time and ¥ +( Fo(ty) At) » B, ()4t
and §cy(ti)At are first order discrete-time approximations

of & _(t;

i1 Y1) gcy(ti) and gcz(ti) requlreq in Eg (2.110B)

{Ref 9). Also note that a discrete~time approximation of
gc(t) is reguired. From Maybeck (Ref 9) an appropriate

approximation, R(t;), is

R(t;)= R_(t;) /it (2.123)

Recall that F_, B, and B, are defined in Egs (2.58)

cy
through (2.60) and are described in terms of the continuous-
“ime controller model matrices, the Kalman filter gain (which
is calculated using Doyle and Stein’'s technique) and the

deterministic controller gain.
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The Doyle and Stein Technique in Discrete-Time Systems - 2

This section describes the second approach taken in
this thesis to extend Doyle and Stein‘s (Ref 2) technique
for enhancing robustness of continuous-time LOG controllers
to sampled-data LQG controllers.

In this approach, a sampled-data LQG controller is
uwsed. In order to apply the Doyle and Stein technique,
S5 94 gg in Eq (2.99B) is replaced by Qi. In this controller,
gé the assumed &iscrete dynamics input noise strength, is
related to Q(g) of Eg (2.64) and is

[ T 2 T
Q5= 83 Q4 &3 + 9 B, V B, At (2.124)

T of the contin-

Eq (2.124) is a format similar to using G Q G
uous-time system multiplied by At as & first order approxi-
mation to Q4 (Ref 9). At is the sample period of the sampled-
data controiler. Note that the subscript ¢ in Eq (2.124) is

to indicate that the B matrix is the continuous-time model

B matrix.

-

-

Flowcharts and FORTRAN source code for the software
necessary to implement this approach appear in Appendices

A and B respectively.

Enhancing Robustness of Discrete-Time Systems by Directly

Choosing K

The third approach to enhancing robustness of sampled-
data controllers involves directly picking the Kalman filter

gain K. This approach is related to that of Doyle and Stein
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for continuous-time systems in that & similar strategy of
ma¥xing the return difference mappings for a full-state feed-
pack system anq an observer-based system asymptotically equal
is used. Fié (2.6a) shows the full-state feedback system
while Fig (2.6b) shows the observer-based suboptimal control
law configuration where g(ti)= -gg 2(t;) instead of the opti-
mal control law where g*(ti)= -G¥ ﬁ(t;). Note that the label-
ing in Fig (2.6) indicates that this analysis is done in the
z-domaln versus_the s-domain for continuous-time systems
(Ref 10).

The return difference of the full-state feedback and

the observer-based design need to be equal in order for the

. observer-based design to recover the robustness properties

of the full-state feedback controller. That is, (g K] is to
be found such that

o1
=l

By [E (21 -8 By : (2.125)

Note that K is the steady-state Kalman filter gain and & is
the state transition matrix. If K(gq), parameterized as a
function the scalar q as in the continuous-time case, is

selected such that
24 W (2.126)

for any nonsingular m x m W then Eq (2.126) is satisfied

asymptotically. K is thus chosen as
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Fig 2.6 (2) Full-state feedback (b) Suboptimal control law
u(t; )==G* £(t) (Ref10)

E=q 3 l3B u (2.127)

Now, g and W can be varied as in the continuous-time case to
achieve the desired degree of robustness. Note, in the dis-

crete-time case, K is chosen directly, as opposed to choosing

=

1>

'e" ir. the contirucus-time case (Eq (2.64); and then cal-
culating a K based upon the solution to the matrix Riccati
Eq (2.13) (Ref 10).

Naybeck (Ref 10) indicates there are many possible

' choices of W in Eq (2.127) above but that one particular
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choice is motivated by considering the dual state equations.

This choice, Eq (2.128),

_ -1 -1
W= (H3 " By) ' (2.128)

assigns m eigenvalues of the closed loop system to the origin
and the remaining (n -~ m) eigenvalues to the invariant zeros
¢f the system for a system of n states and m inputs.

In order to use the performance analysis algorithm,

the suboptimal Control law must be put into the proper format.

The proper format, from Maybeck (Ref D), is

Gy (ty)= -G2(t,) (2.1294)
(s, t)= (g, ;) [I - K(tp) Bt

- = By(ty) GE(t) (2.1298)

‘Ecz(ti)= E(ti,qr t3) K(t) (2.129C)

Gop(t3)= By ()= G (t)= 0 - (2.129D)

where g(ti+1, ti), gd(ti), gg(ti) and the Kalman filter gain

g(ti) are those associated with the controller model.
Flowcharts and FORTRAN source code for the software

necessary to accomplish this choice of W and to vary the

perzmeter g aprear in Appendices A and B respectively.
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III Results and Conclusions

Introduction .

This chapter discusses the results and conclusions of
this study, based on data generated by the interactive computer
program written to support this study (see Appendices A
through E for program description). There are several items
about the following discussion that need to be addressed at
this point. First, the following discussion of the various
controllers and performance enhancement techniques includes
data obfained for the software verification models (Test
Cases 1, 2 and 3) that are introduced in Appendix D. qecond,
the Apollo model state vector was rea;ranged to meet the
software requirements for handling the deterministic state
(see Determ?nistic State Augmentation Section of Chapter II}).
In this rearrangement the original states 1, 2, 3, 4, and 5
become states 2, 3, 4, 5, and 1 respectively, that is

N T_[

o, ) (3.1)

%
2

w

I XO]

vy, 4]

Third, when discussing the results obtained for the Apollo

model only states 1 and 4 (¢ and Yb) will be used to demonstrate
performance since the behavior of states 2 and 3 is similar

to that of state 1 and state 5's behavior closely resembles

that of state 4, which is the state most direclty affected

by changes in Sy e Fourth, even though the time histories of

the mean and covariance of the states and controls form the

primary basis on which to judge closed-loop system performance,
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the eigenvalues of each closed;ioop system are computed and
examined to determine stability {(prior to running the mean
and covariance analysis). Last, the matrix design parameters
V and W in the two performance enhancement technigues are
always l-by-1 matrices for the applications considered. They
are thus always set to 1 since any desired change can be
atcomplished by adjusting the appropriate scalar design
parameters. The order of the discussion is continuous-time
controllers first, discretized continuous-time controllers
second, sampled-data controllers third and finally remarks

about some general trends applicable to all three-controller

types.

Continuous-Time Controllers

The steady state performance of the continuous-time
controllers without first applying the Doyle and Stein
technique for the three software verification test cases is
presented in Table D.2, Appendix D. The steady state
performance of the controller for the Apollo model is displayed
in Figs 3.1 and 3.2 for wg
400, respectively (mg in the controller design model is set

of the truth model set at 100 and

at 100 for all cases). Figs F.l through F.3 of Appendix F

show Apollo model performance for several other values of

wi. Note from these Figs that the closed-loop Apollo system

is unstable for wi

only for this last case).

< 50 and Ji > 400 (evident in state 4

Xy

T . P
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When the Doyle and Stein technique is applied to Test
Cases 1, 2, and 3, the performance is improved in the sense
that the density functions are more tightly packed around the
mean values [state estimates known more p?ecisely) as q2
(the Doyle and Stein scalar design parameter) becomes large;
see Table 3.1. This is indicated by the fact that surfaces
of constant likelihood, planar ellipses in the two~dimensional
case, contain less area as q2 increase where the area is
directly proportionalY to the product of the eigenvalues of the
steady~state covariance matrix, P (Ref 9). (A quick check,
applicable in the two dimensional case, is to compute the
value of P11P22 - P122 since this value is t@e magnituqe of
the two eigenvalues of P multiplied together. Note, in all
cases presented here, the P122 is a negligible term and thus

only values-for P and P,, are given in the tables that

11
follow.) By examining Table 3.1, Doyle and Stein's claim
that their method moves some of the filter poles toward stable
plant zeros and the rest to -« (asymptoticaliy as q2 becomes
larger) can be verified. .

Note that the Apollo model used in Table 3.1 includes a
damping factor, r, of 0.001 in the bending mode dynamics
(i.e., the 3, 3 term in the F matrix of Eq (2.75) is no longer

0 but becomes =-2Lw A damping factor was added because no

b) -

noticeable performance improvement could be obtained with

-

on the imaginary axis) and it was anticipated that moving the

58
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3 .0

poles away from the imaginary axis might allow the Doyle and
Stein technique some extra "maneuvering room" in which to
bring about steady state performance improvement. Several
damping factors between 0.001 and 0.15 were tried to see if
steady state performance could be improved but no noticeable
improvement was obtained for any value tried. (No values
f%rger than 0.15 were tried since = 0.15 is already 10 times
larger than that in the actual Apollo system.)

Table 3.1 shows gnly marginal improvements in closed-loop
stability for the Apollo model as q2 increases until some

2

critical value is reached (approximately, g“= (701)2) at which

closed-loop stability is lost. ©Note that one of the filter

. poles is positive for q2 < (701)2, the stable closed-loop

system case, and that the filter poles do not migrate as Doyle

2 (701) %, change to the

and Stein sﬁggest but abruptly, at gq
configuration where some are co-located with system zeros and
the rest have larger negative real parts. A§ this point
closed-loop system stability is lost. It is.noted that in the
case of the Apollo model, the Doyle and Stein techniques adds
white noise in the system before the first order lag (where
noise did not previously enter) instead of after it and this
may affect the resulting performance of this technigque. This
phenomenon should be investigated further.

Table 3.2 presents the results for Test Cases 2 and 3

when the strength of the continuous-time noise Q is "tuned"

by adding a AQ which is a simple scalar multiple of Q. AQ is
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Steady-State Performance of

Table

3.2

Continuous-Time Controllers with Tuning
of Q0 by Adding 4

T

-

Test Q, 40 Steady-State Filter
Gase Px < Puu Poles
t*¢
2 | 10, 1 4.4(1007°, 6.110073 | 2.3 -9.6439.1
2 | 10, 100 2.9(10)7°, 5.0(10 73 | 5.0 -40£340
2 | 10, 1000 1.9(10)7°, 4.7(10)”3 | 79.6 ~125¢4125
3 1, .1 219 , 2091 4.3(10)Y  =7.25:91.7
3 1, 1 210, 2229 6.5(200% -11.3, -6.6
3 1, 100 179 , 2784 6.7(10)7 -90, -5.9
3 1, Tooo 173, 2914 7(10)°® -9000, -5
2 11, 10 @ - - -28.0, -5.99
3® | 1, 10000 o 0 p ~900, ~-5.90
3 11, b w o . -9000, -5.90

g .0

a) Only diagonal terms Pll’ P22 shown.

b) Truth model F matrix deliberately mismatched with controller

design model; F

= -1
2,2

00.

Test Case 2 not shown;

it also

could not be stabilized using this tuning vprocedure.
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chosen such that it approximatés the value of noise added by
the Doyle and Stein method. Tuning Q in this manner adds noise
at the points.of entry of v into the system dynamics instead

of at the point where u enters as in the Doyle and Stein
technique. (Test Case 1 is not displayed because there is no
physical difference between the Doyle and Stein technique

and this tuning procedure for this case.) Comparing the results
for Test Cases 2 and 3 shows that there is not much improvement
from one method to tﬁe other for Test Case 2, but that there

is a noticeable difference for Test Case 3. Note, when the
closed~loop system of Test Case 2 was made unstable (by

changing entries for the F matrix) in order to show robustness

| effects, that neither procedure (Doyle and Stein or adding AQ)

could re-stabilize the closed-loop system. For Test Case 3,

the Doyle apd Stein technique gives better results in the sense
that the surfaces of constant likelihood, contain less area
indicating that density functions are more tightly packed around
the mean values. This approach was not applfed to the apollo
model since the results of the Doyle and Stein approvach were
poor.

As far as the Test Cases are concerned, the Doyle and Stein
technique appears to be a valid approach to improving the
performance of continuous-time systems even for values of qz
less than «, For Test Case 3 this technique is superior to

tuning thé O matrix by adding a AQ as a simple scalar multiple

of 9. 1In this case, the tuning procedure adds noise in both
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state equétions, but the Doyle.and Stein technique adds noise
only to the second state equation, where the control input
exists. 1In contrast, either procedure adds noise at the
control input for Test Case 2 due to configuration of the

B and G matrices in the test case. As for the more complex
Apollo model, the results are inconclusive. While some
marginal improvement could be seen for large q2 and mg= 400,
the total behavior of the system was not as expected. 1In
particular, the "behavior of the filter poles, as discussed

previously, was not expected, especially since when the poles

were in the desired positions, closed-loop stability was lost.

Discretized Continuous-Time Controller

The results of discretizing each controller without first
applying thé Doyle and Stein technique are presented in Table
D.2 of Appendix D. Examination of the entries in this table
reveal that the discretization process gives better results
for smaller sample periods, as expected sinc% the first order
approximations used are valid for small (relative to charac-
teristic times of the basic system) sample periods (see the

Doyle and Stein Technigue in Discrete-Time Systems - 1 in

Chapter II). Sample periods chosen for the robust versions

of these controllers were those for which the unmodified
controllers had essentially the same steady-state performance
as their continuous-time counterparts. Table 3.3 presents the

results for the discretized controllers for Test Cases 1, 2,
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Table 3.3

Steady-State Performance of
- Discretized Robust Controllers

Test > b Steady State
Case At o] P a P
xtxt uu
1 .01 1 1.78 .120
1 .01 10000 1.48 12.4
1 .01 (500) 2 1.47 194
1 .01 (1000) 2 o =3
2 .001 100 2.01(10) 7>, 4.79(10)"3 71.5
2 .001 (25) 2 1.86(10) ">, 5.55(10) "3 305
P .00L (49) 2 1.77(10)7°, 6.78(10) 3 953
2 .001 (50) 2 P o
-3 .001 1 221, 2122. 4.7(10)%
3 .001 100 235 , 1814 - 2.9(10)4
3 .001 (100) 2 316 , 1192 7.3(10) 4
3 .001 (1000) 2 ) @
65
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Table 3.3 (Cont)
Test 5 Steady-State
Case t q b P % a P
£X¢ uu
1€ .001 0 w "
1€ .001 1 w w
1€ .001 | _ 100 12.0 2.44
1€ .001 | (1000)2 7.33 128
3¢ .001 0 w .
3¢ .001 GO « ©
3¢ .001 | 10000 1025, 554 4.99(10)8
- c 2 6
3 .001 (1000) 1533, 262 2.16(10)
a) only diagonal terms Pll’ P22 shown.
b) q2 is the Dcyle and Stein scalar design parameter.
c¢) F matrices changed in truth model description to show
robustness. For Test Case 1, F, = 0.1; for Test Case 3
Ft = -100. Test Case 2 could not be stabilized once a
2,2
destabilizing F was chosen.
f
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and 3 when the Doyle and Stein technique is applied. Comparing
the results for Test Cases 1, 2, and 3 shown in Table D.2 and
3.3 shows that discretizing a continuous-time controller to
which the Doyle and Stein technique has been applied produces a
discrete-time controller with enhanced performance up to a

certain value of qz.

) The Apollo model presented difficulties in this case

also. In fact, no matter how small the sample time was made
(periods down tg 0.061 sec were investigated), the resulting
closed-loop system was unstable indicating that the first

order approximations were invalid. To improve the situation,

a damping factor was again added in bending mode dynamics as

in the continuous-time case. The initial choise of ¢= 0.015
and sample periods < 0.01 sec allowed the resulting discretized
continuous-gime controllers to remain stable even though ui

was varied passed 400 which was the desired value about which
to investigate performance. By trial and error and noticing
trends in the data (the interactive computer ,program was well
suited to this task) a suitable combination of sample period and
damping ratio was found. With a z= 0.01 and sample period

of 0.01 sec, a discretized continuous-time controller that

was initially unstable at w§= 400 could be made stable by
applying the Doyle and Stein technique before discretizing.
Values of qz between (100)2 and (0.001)2 were tried and

2

In fact stable closed-loop operation occurs only for

67
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2 < (0.05)2. The fact that there is an upper

(0.005)2 <gqg
limit on the value for q2 is an aspect that is not seen in
the continuous-time case. Fig 3.3 shows the performance of
the unstable unmodified discretized continuous-time controller.
Figs 3.4 and 3.5a show the performance of the discretized
controller after the Doyle and Stein technique is applied
where q2= (0.1)2. For q2= (0.02)2 the results are shown in
Figs 3.5b and 3.6. It is gquite evident from these Figs that
applying the Doyle and Stein technique can cause dramatic
improvements in performance.

Thus, applying the Doyle and Stein to a continuous-
time controller and then discretizing the result to produce
a robust discrete-time controller, appears to be one acceptable
approach to extending the Doyle and Stein technigue to discrete-
time controllers. Note however, that since the discretizaticn
process reguires appropriately small sample-times, it is
anticipated that there will be some cases where this technicue
cannct be applied readily. The Apollo model is a good examrle
of this since in the actual Apollo system the sample period
is 0.1 secs which is 10 times slower than that which produces
a stable closed-loop system. One other item to note at this
point is that the interactive computer program is well suited
to any tuning (trial and error) that may be required. 1In fact,
the author accomplished the tuning described above in severel
hours of interactive computer-time, whereas it probably wculd

have taken several days using batch processing.
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n10*
48.42

A damping ratio= 0.01

30.94
e,

| [

o~
A 4
-5
;8
g T T T T —r T n ]
0-%.00 14.28 28.57 ~ 42.B6 57.14 71.43 B85.71 160.00
secs
a) wvariance of state 1
. Y damping ratio= 0.01
= o .
[ g
- -]
>
-
o
[ =
w
-
;8
.00 14.29 28.57 42.86 57.14 71.43  B5.71 100. 00
secs

b) wvariance of state 4

Fig 3.3 Discretized continuous-time performance with U§=400 in
the Apollo model.
69

o TTUIe Ricnantamy ,one e




«o.OuNu pue oo:umﬁgcpﬁa aouewIoJyasd swij-snonuUTUOD PazIFAIISTJ f°¢ 314

70

41 93elS JO aduerJIBA (P 1 9338 Jo adueldea (Qq
sS0a8 8008
ee.e-.: :.wu nv.m o_.»u ou.m. ..n.mu nu.F 0'g,y eo.em- :..wn a-._.r :.Wu’ wu.«rv pc.m« auu. 8.&».‘
ﬂt 8x 8%
+» -
L& Lo
o 9
~N -
8 3
B s
) Al -
E= =
&9, So
47 91e}s JOo ueaw (O T T @3e3s JOo ueauw (®e
sS03s soas
[+ ] .am. :..nro anm. " .»w nn.m. ..e\...mu ns.m- 00°0, =z eo.ow: _r.mo nv.w_. -.WM uc.mv nmu ou.cr. 00°0, =
X a3
u' ”cl

P—

‘ ! s 4
0 ﬁ-’ d
- s
w ! p -
s -3
&g s

- W e n s

.0!'

?;

i

- ) i ) ~s.rl.uu!l*v|lz|0.-)|




T

x10"
228,07

150, 7t

75,38

§

L3 ¥ Rl T L] 1 L
14.29 28.57 42.886 87.14 71.43 86.71 100.00
secs

PU
0. 00
3

: . 2
a) control variance when q =0.01

%.00 . 14.20  28B.57  42.86 57. 14 71.43 865.71  100.00
secs

b) centrol variance when q2=0.000h
Fig 3.5 Discretized continuous-time performance with¢u§=h00
and q2=o.o1 and 0.0004 (control variance)
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Sampled-Data Controllers

This section presents the results and conclusions
concerning the ‘performance of the robust sampled-data controllers
developed in this thesis. A discussion in the effect of
applying the Doyle and Stein technique (as extended in the

Enhancing Robustness of Discrete-Time Controllers - 2 section

Of Chapter II) appears first, followed by comparison with the
effects of tuning the Q matrix (by adding a AQ as in the
continuous-time‘discassion). Last there is a discussion of
the results for picking the Kalman filter gain X, directly
(see appropriate section of Chapter II).

Doyle and Stein Technigues Extended to Sampled-Data

 controllers. The steady-state performance of the sampled-

data controllers for Test Cases 1, 2, and 3, with no robustness
enhancement: is shown in Table D.3 of Appendix D. Note here
that, as for discretized continuous-time controllers, the
sample period can greatly affect the steady-state performance.
The performance of the sampled-data controller for the Apollo
model, with no robustness enhancement and for several different
values of mé, is presented in Figs 3.7 and 3.8 and Figs F.4
through F.6 of Appendix F. As in the continuous-time case,

the closed-loop system is unstable for wg < 50 (although this
is not shown in the above Figs). In the sampled-data case
instability also occurs when wé > 200. (Note 0.1 secs is the
chosen sahple perioé for the Apollo model since this value

gives good performance and is the same as that used in the

actual Apollo controller).
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The steady state closed-lédp performance with the Doyle
and Stein technique applied is presented in Table 3.4 for Test
Cases 1, 2, and 3 and in Figs 3.9, 3.10, and F.7 through F.10
for the Apollo model. Comparison of the results presented in
Tables 3.3 and 3.4 shows, for Test Cases 1, 2, and 3, that the
steady state performance is enhanced as q2 increases in the
sense that areas of the ellipse representing the surfaces of
constant likelihood become smaller (see related discﬁssion of

these surfaces In the Continuous-Time Controller section of this

chapter). For the Apollo model the results are similar. Figs
3.9 and 3.10 show stable closed-loop operation for w§= 400

and 700, respectively, while Figs 3.7, 3.8 and F.6 indicate
that the closed-loop system with an unmodified controller is
unstable for wﬁ > 300. By examining Figs 3.9, F.7 and F.8,
one can see_that there is a value of q2 (in this case between
(O.l)2 and 1.0) beyond which increases in q2 produce no
noticeable difference.

As in the continuous-time case, a comparison is made
between the Doyle and Stein technique benefits and those benefits
obtained by tuning the Q matrix by adding a scalar multiple
of Q, AQ. Also as in the continuous-time case AQ is chosen so
as to approximate values of q2 used. When this technique is
applied to Test Cases 1, 2, and 3, the performance could be
made similar to that obtained by applying the Doyle and Stein
technigue as shown by comparing the results in Tables 3.4 and

3.5. In contrast, Figs 3.11 and 3.12 show the performance
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Table 3.4

Steady-State FPerformance of
Sampled-Data Controllers with Doyle and
Stein Technique Applied

gizg At q2 b 5 Stean State
tht uu
1 01 L.l 1.79 .105
1 .01 1 1.78 .119
1 .01 100 1.58 .900
1 .01 (1000) 2 1.46 61.5
2 .01 .01 4.00(10)75, 6.0(10)73 2.28
2 .01 1 2.70(10) "%, 5.1(10)73 5.11
2 .01 100 1.75(10)7°, 5.4(10)7° 51.8
2 .01 10000 1.65(10)"°, 6.4(10) 3 110
2 .01 (1000)2 | 1.65(10)7>, 6.4(10) 73 113
S i T I _
3 .01 .01 341 , 1108 655
3 .01 1 341 , 1108 652
3 .01 100 349, 1078 473
3 .01 10000 316 , 1193 774
b
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. Table 3.4 (Cont)

Test 5 Steady-State
Case At q b Px % a P
2 uu
«1€ .01 0 w »
1€ .01 1 ® |
1€ .01 F 100 12.0 2.43
o} 2
1 .01 (1000) 7.35 63.0
R R A AR R
3€ .01 0 w «
3¢ .01 100 m o
3¢ .01 (100) 2 996, 551 4.96(10)°
3¢ .04 (1000) 2 1554, 257 2.03(10)°
a) only the diagonal terms Pll’ P22 are shown

b)

c)

q2 is the Doyle and Stein scalar design parameter

F matrices changed in truth model descriptions to show

robustness. For Test Case 1, F_,= .1; for Test Case 3,

Ft = -100. Test Case 2 choul& not be stabilized once
2,2

a destabilizing F was chosen.
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Table 3.5

Steady-State Performance of Sampled-Data
Controllers When Q is Tuned by Adding AQ

Test Steady-State

Case At Q , AQ thxt a Puu
1 01 =, -1 1.73 .156
1 01| 2, 100 1.53 1.97
2 01 ] 10, 1 | 3.92(2007°, 5.69(10)7° | 2.68
2 .01 10, 100 2.52(10) 7>, 5.02(10) "> | 6.22
2 01 | 10, (1004 | 1.67(10)7>, 5.90(20)73 | 80.3
2 .01 ] 10, (100% | 1.56(10)75, 8.47(10)73 | 231
3 01 | 1, .1 340, 1110 672
E 01 ] 1, 1 337, 1122 782
3 o1 | 1, 100 325, 1163 - 2390
3 o1 1, a0t 324, 1169 4800
3 o1 | 1, (10 323, 1169 4900
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Table 3.5 (Cont)

Test Steady-State
Case At Q , AQ PX < a 2
£t ud
b 01 | 2, 0 o o
«_ b c c
.01 2, 1 Large Large
b .01 2, 100 9.33 3.43
b 01 | 2, (10002 | 7.34 72.1
b .01 1, 0 " o
b .01 | 1, 100 oo : o
b 01 |1, ot | e . @
b 01 |1, aod®| - o

a)

b)

c)

only the diagonal terms Piq+ Py, are shown

F matrices changed in truth model descriptions to show

robustness. For Test Case 1, F,= .l1; for Test Case 3

Ft = -100. Test Case 2 not sﬁown, but it could not
2,2

be stabilized using this technique once a destabilizing

F matrix was chosen.

Steady-state not rached during length of simulation,
but eigenvalues are within the unit circle.
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cf the Apollo system when the é and _Q tuning procedure is
used. Note only the mean of state 1 and variance of state ¢
are shown but_ adl states exhibit similar behavior. Note, from
Figs 3.11 and 3.12, that no matter what value of AQ was added,
there was little or nc periIormance benefit. Wwhile the largest
AQ shown in Figs 3.11 and 3.12 is 10,000, larger values were
t¥ied but the closed loop system eigenvalues rapidly moved
outside and away from the unit circle resulting in even more
unstable closed-loop operation.

Based on the above comparisons and discussion, the
extension of the Doyle and Stein technique to sampled-data
systems provides a valuable tool for performance enhancement
in the face of uncertain parameters in the controller design
model. For the Apollo model, values of q2 as small as 0.0001
effeqtively:breated a stable closed-locp system as shown in
Fig F-9. (For q2 > 0.01 the increase in stability appears more
dramatic at first glance, Figs 3.10 and F.9,.but this is partly
due to a much larger initial transient that occurs when q2
increases.) Tuning Q, by adding a AQ, that is & scalar
multiple of Q, had little effect on the Apollo model since
this did not add additional noise at the control input as the

Doyle and Stein technique did.

Robustness Enhancement by Directly Picking K. 1In

general the results from this technigue were unsatisfactory.
For Test Case 2 and the Apollo model, there were no combinations

of the scalar design parameter g (see the applicable section of
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Chapter II) and sample period that produced stable closeé-

loop svstems. The results for Test Cases 1 and 3 are presented
in Table D.3 of’Appendix D. Test Case 1 is the only case used
in this study for which this technique provided performance
enhancement. For Test Case 3, using the areas of the ellipsoids
representing the surfaces of constant likelihood as the basis
of comparison, shows that the performance actually degraded

11 and P22 as

given in Table D.3 is directly related to these areas.)

with increasing g. (Recall that the product of P
One possible cause for the failure of this technique
to produce stable closed-loop systems is that the suboptimal
control law ult,)= -GZ g(t;) was chosen as the basis of the
controller instead of the optimal control law u(t;) = -GZ g(tZ).
The case for the optimal control law should be investigated.
Another pos;ibility is that there is an as yet undetected
error in software used to implement this controller despite
thorough testing and validation. In any event it is noted at
this point that there are no stability guaraﬁtees for this
method of choosing K as there are for the LOG controller when

K is obtained as a result of solving the appropriate matrix

Riccati equation (Eg C.18 of Appendix C for example).

Remarks
Closed~loop system eigenvalues were determined for each
control system designeé ané were the primary basis of claims

about closed-loop stability. Although these eigenvalues indicate
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stability, they do not directly provide performance charac-
teristics versus time of each controlled system. This
information is obtained from the mean and covariance analyses
developed in Chapter II. Both performance measures have
been presented here to provide an adequate portrayal of system
characteristics.,
‘ Another item of a general nature and applicable to all
the modified controllers, whether continuous or discrete-time,
is that as the ;oise‘level is artifically increased in the
system (via Doyle and Stein technique or by tuning Q by adding
AQ) the control variable variance generally increases (implying
increased control costs are incurred for increased robustness,
which is not surprising). This fact should be considered in
any design attempting to apply the techniques for enhancing
robustness ;hat are discussed in this thesis.

One final note involves the performance of Test Case 2.
This system did not behave "nicely" during the course of this
&nvestigation. It could not be made stable éhen picking the
Kalman filter gain directly and it could not be stabilized
(using either of the two procedures tried here) once the F

matrix was changed to destabilize the closed-loop system for

robustness studies. The performance of this Test Case should

- | be investigated further and characterized.
N
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IV Recommendations

The recommendations fall into two main categories. The
first deals with the basic nature of robust control systems
and the second deals primarily with increasing the utility of
the interactive computer program developed to support this
Study.

Basic Investigation

The first item that requires further investigation
and explanation is the fact that the Doyle and Stein technique
did not provide noticeable performance enhancement for .the
continuous~time Apocllo system. There are two aspects about
this particular model that may have affected the results. The
first is that there is no damping in the bending mode dynamics,
which places a pair of poles on the imaginary axis. Aan
attempt to allow the Doyle and Stein technique more "maneuvering
room" by moving these poles off the imaginary axis (non-zerc
damping factor) was tried but was not successful. The second
is that for the unmodified continuous~-time controller, noise
enters only states 2 through 5 but when the Doyle and Stein
technique is used, noise now enters before the first order
deterministic lag and thus into all 5 states. The effects of
this aspect on the Doyle and Stein technique need to be
characterized.

A second item is that, for Tgst Case 3, one of the

LQG controller poles (eigenvalues of F -.§ Gz - K H)
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is positive but the closed—looé poles are all negative and
thus the closed-loop system is stable. This phenomenon has
been observed before by C.D. Johnson ("State-variable Design
Methods May Produce Unstable Feedback Controllers", Inter-

national Journal of Control, 1979, Vol 29, No. 4, 607-619)

and should be investigated and characterized. Another phenomenon
that should be investigated is the fact that there are upper
limiting values on q2 (in the Doyle and Stein technique) beyond
which the discretized continuous-time and sampled-data controllers
no longer cause closed-loop system stability; something not
observed for the purely continuocus~time case.

The results for picking K directly were unsatisfactory

“and this approach whould be investigated further. The

investigation should include the possibility of using the optimal
control law ult;)= -GX g(t;) as the basis of the formulation.

As mentioned previously, there are no guarantees of closed-

loop stability (even with no mismatch betweeq the design and
truth models) when this method is used, unlike the case of

using the optimal gains from LQG controller synthesis methods
{when there is no mismatch of design and truth models).

For the cases where good results were obtained, exten-
sions should be attempted. The possibility of adding time-
correlated noise in a fashion similar to that of Doyle and Stein's
technique for adding white noise should be investigated. The
results would have potential applications in cases where the
noise process is known to be frequency limited. Thus the

controller would only expend extra control energy over a
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specific freguency bandwidth to achieve robustness instead of
over the entire frequency spectrum as is the case for white noise.
In addition, the results of extending these technigques to a

more general purpose controller, (as opposed to the simple
regulator used here) such as a Command Tracker Generator/
Proportional Plus Integral Plus Filter Controller, should be
investigated (Ref 10). Also the performance benefits for other
specific applications, such as in aircraft flight control systems,

should be investigatéd.

Program Improvements

Since the program is interactive and the CYBER remote
terminals limit the amount of memory that can be used at AFIT,
the size of the systems that the program can currently handle
is restrictgd to less than eighth order systems. Two approaches
can be taken to alleviate this problem. One would be to rework
the current interactive program to use several of many
available techniques to streamline/optimize ghe source code
so as to reduce core memory requirements. Use of FORTRAN
overlay structure, rewcrking the system model storage in
conjunction with limiting the allowable number of inputs and
outputs are several of the potential techniques that could be
ured. (See Appendix C.) A second approach would be to procuce
a non~interactive version to handle high order systems.

Theére are severzl cther items that could be changed
and/or added to make the program more useful. One is to

provide a better discretization technique for producing the
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discretized continuous-time coﬁtroller in order tc remove some
of the negative effects that the discretization process has on
controller performance when the assumption used in the first
order approximation (small sample period compared to system
characteristic times) is not valid. A potentially useful option
would be to provide plots of the time histories of the mean
tracking errors versus just plotting the means of the states.
This could be accomplished relatively easily since the perfor-
mance analysis Software currently propagates the state estimates;
it just does not store them for plotting. Naote this would be
useful in making comparisons with data available in the

literature since tracking error data is used widely for, compar-

~isons. Another potentially useful option would be to provide

time histories of the sampled-data mean and covariance between
sample-time “'which would provide additional insight into system
performance. The current time history data provides no
information about system behavior between sample periods and
thus the possibility of aliasing errors exists. Finally, an
option to compute the eigenvalues of the steady-state covariance
matrix, Extxt,~wou1d be useful in evaluating the closed-loop
system performance of various controllers as design parameters

are changed since they are directly related to the areas of

the surfaces of constant likelihood.
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fppendix

Software Flowcharts

This appendix contains flowcharts of the software
developed during the course of this thesis. 1In this appendix,
acronyms sucr as LQGRP, CIIFTR and DDTCORN are tre subroutine
names as they appear in the FORTRAN source code. When these
acronyms appear beneath the lower right corner of a block in
the flowchart, this indicates that the functions in that box
are performed by the~-given subroutines. All such subroutines
have their own flowcharts and descriptions. Flowcharts begin
with & éubroutine or program name and end with & return, end
or stop. Each subroutine description has a reference to the
corresponding flowchart number in parentheses next to the

subroutine title.

.1)

e

LQGRr (Fig
IQGRP is <the main program name. IQGRFP seguences the
three primary program modes. The first priméry mode is for
inrut. =11 metrices/vectors associated with tre controiler
model and truth model are entered when LQGRF 1s in the input
mode. The second primary mode develeps and formats for per-
formance analysis, either a continuous-time or sampled-iata
controller derending on a user input. The last primary mode

ir. 1QGRF is the performance analycis. The performance analy-

m
m

iz ie a covariance znalysis as described in the body of the

thesis for continuous-time and sampled-data systems.
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INPUTM (Fig ~.2)

The subroutine INFUITN, the first primary mode of IQGEZF,
allows the user, to input or output system model matrices for
the truth model and controller model. In.addition. it allows
the user %o specify cost-weighting matrices needed for optimal
IQG controller computation. The subroutine INPUTM is entered
&t the beginning of each simulation run. Each time it 1s en-
tered, the user can select to change and/or print any, all
or none of the matriees or portions of any or all mairices
by choosing appropriate options. One set of options specifies
a partibular matrix or vector, the other set specifies what
to do with that matrix or vector. The options are listed in
Table E.1 of Appendix E. .

Two zdditional options in this‘routine allow the user
fo store 2l matirices, and subsequently retrieve them from &
local file ;hat can be stored as & permanent file uron prograr

termination. This option is especially useful for systems

of large dirension that will be used during pany different

£

o

seccsion

[0}

rurning the prograr. The user merely has to at-
tach the permanent file created during & previous run and
execute one option to recover the entire set system matrices.
Normal program termination can only be accomplished when in
the input mode. Progrzn termination is accompliched by srec-

ifying ary re<riz/vector optior and then specifying an inpui/

output ontion of zero.
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RGS (Fig A.3)

The subroutine RGS, directs the development and
formatting of LQG controllers for performance analysis by
subroutine PERFAL. Based on a user input. to select either
a continuocus-~time, discretized continuous-time or a
sampled-data LQG regulator, RGS calls the appropriate
subroutines CLQGRS or DLQGRS necessary to compute the
various quantities associated with each type controller.
After the desiré&d controller is properly formatted, RGS
calls subroutine FRMAUG to form the augmented system
matrices as described in the performance analysis sections
of this thesis. Eigenvalues of the closed-loop system are

computed (See subroutine MEIGN) if the user wants to see them.

PERFAL (Fig A.4)

The subroutine PERFAL performs the performance analysis
as described in both performance analysis sections of this
‘thesis. PERFAL uses the flag, IFLGSD, which}is set in the
subroutine RGS, to determine whether to perform a continuous-

time or discrete-time system performance analysis.

CLQGRS (Fig A.S5)

The subroutine CLQGRS, called by RGS, performs the
computations to specify a continuous-time LQG regulator
ané format it for performance aznalysis. CLQOGRS calls sub-
routine CKFTR to calculate steady-state Kalman filter gain

X, and calls CDTCON to compute the optimal steady-state
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feedback gain matrix, gé. Eigenvalues of the truth model F
matrix, the controller model F matrix, [F. - K. Hf] (filter

- B. G - *
poles), [gf ,Bf Gc] (LQ controller poles) and [gc Bf Gc
Kf Hf] {LQG controller poles) are calculated if the user wants

to see them (MEIGN).

MEIGN (Fig A.6)
nEoSN
The subroutine MEIGN is called by CLQGRS to compute

and then print the eigenvalues of any given square matrix.

CKFTR (Fig A.7)
The subroutine CKFTR is called by CLQGRS to perform

the computations for determining the steady-state continuous-

 time Kalman filter gain X as in Eq (2.13). This subroutine

deletes deterministic states from the filter equations as

described ip the Deterministic State Augmentation section

of this thesis. In addition, the user may select to use
the Doyle and Stein method to enhance robustness of the

controller. This is done through a call to subroutine DAS1.

DAS1 (Fig A.8)

The subroutine DAS1, when called by CKFTR, gives the
user the necessary design options to perform modifications to
the Kalman filter gain calculations that are described in the

Enhancing Robustness in Continuous-Time LOG Controllers section

of this thesis. The user selects the scalar design parameter,
g, and the matrix design parameter, V, and then must select

to calculate the modified Q{q) matrix. After observing the
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modified Q(q) matrix the user can select either to exit the
routine or recalculate Q(gq) with new parameters. Note, the
user may chose a@ny option at any time in this routine and

therefore must insure that values are chosen for q and V

]

ricr to calculating Q(q) 2nd that Q(g) is calculated prior

Y

to leaving the routine.
CDTCON (Fig A.9)

The subreutine CDTCON is called by CLQGRS to perform
the necessary calculations to obtain the continuous-time op-
timel steady-state feedback gain matrix, gg as described by
Eqs (2.10) and (2.1i4). This subroutine makes provision for
non-zero cross cost-weighting matrices by cailing the ;ub-
routine PRIMIT. PRIMIT supplies an equivalent transformed sy-
stem of equations in which the cross cost-weighting terms are

zero. This transformation is necessary because the matrix

Riccati solver can handle only those systems of equations

.With zero cross cost-weighting matrices. A discussion of the

transformation is in Appendix C.

MYINTG (Fig A.10)

The subroutine MYINTG is called by RGS and DIQGRS.
It vrovides an equivalent discrete-time representatior of
any giver. set of F, B, G and g matrices. That is, it computes
end returns the state transition matrix & based on F. It
computes and returns Q,, the discrete-time representazion of

Q, which is an integral function of &, G and Q. 1In aadition,
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. an equivalent discrete-time truth meodel and, if appropriate, A

A e e SRS e e T e YR e B 2 N S s R Ao PO

it computes and returns By, which is a function of B and the
integral of . See Fig £.10 for the equations used in this

calculation.

DSCRTZ (Pig A.11)

The subroutine DSCRTZ takes an appropriately formatted
(from CIQGRS) continuous-time IQG controller and discretizes
it using the first order approximations described in the

Doyle and Stein-Techricue in Discrete-Time Systems - 1 section

of this thesis. These approximations are then properly format-
ted for the performance analysis routine. In addition, this

subroutine computes and then formats for performance analysis,

the discrete-time approximation gd= Bc/ﬁt where at is the

A

sample time _and Bd is the discrete-time approximation to Bc'

the strength of the continuous-time measurement noise (Ref 10).

DIQGRS (Fig A.12) .

Tre subroutine ZLQGRS ig czileC by RGS to perform all

T—r——ry-

necessary computations to specify & sampled-data controller
and then formats the controller for performance analysis as

discussed in the Sampled-Data IQC Controller section of this

thesis. DIQGRS calls ¥3U and then D3TCON to compute the o
cteady-state optimal feecdback gair mzirix Qg. It then com-
rutes a steady-state Kalman filter gain X, using the subrou-
tine DKFTR or the subroutine FKDIRC depending on whether the
user wishes to compute K from the matrix Riccati equation

(DKFTR) or to pick K directly (PKDIRC) (as in the section
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DIQGRS

Input sample time, run time

Compute sampled-data controller
model

MYINTG

¥
Calculate the optimal feedbackJ

gain mairix

DDTCON

!

Calcucz<te the Kelman

Fick the Xalman filter

filter gain

DKFTR

Format ortimzl control
law for performance
analycsis

gain directly

PKDZRC

Format sub-optimal
control law for
performance analysis

-

\
( Return )

DLQGRS

Fig A.12
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of this thesis titled Enhanciné Robustness of Discrete-Time

Systems by Directly Choosing K.) Filter poles, LQ controller

poles and LQG controller poles are calculated (MEIGN) if the

user wants to see them.

XSU (Fig A.13)

- The subroutine XSU 1is called by DLQGRS to compute
the matrices X(t;), S(t;) and U(t.) as described in Egs (2.95)
through (2.97).~ Noté&, XSU does not directly solve Eq (2.95)
through (2.97) but solves an approximation to their soclution

forms as discussed in Appendix C, Programming Considerations.

- DDTCON (Fig A.14)

The subroutine DDTCON is called by DLQGRS to compute
the steady §tate optimal feedback gain matrix, EZ, for a
saﬁpled data controller. Some data formatting complexities
involved in using Kleinman's matrix Riccati eguation solver
to compute the §é are discussed in detail in ?ppendix C.
One involves computing values for the integral definitions

of X, S and U as described in the Sampled-Data Controller

section of this thesis (See subroutine XSU). Another involves
converting a system with a non-zero cross cost-weighting
matrix, S, to an equivalent one with a zero cross cost-
weighting term since the Kleinman matrix Riccati solver does
not have provisions for non-zero S (this conversion is done

by subroutine PRIMIT).
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7,,\,: & .

Uriste &, j:joaf
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S(t.)

{ DppTCON )

Format system equations
for Kleinman matrix
Riccati equation
solver

PRIMIT

Compute Kc steady cstate
value from matrix
Riccati equation

Compute the optimal
steady state feedback

gain matrix, G_

T

g AW1C oo

Return
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DVFTR (Fig £.15)

The subroutine DKFTR, when called by DIQGES, computes
the steady-state Kalman filter gain, K, for a sampled-data

IQG regulator as discussed in the Sampled-Data 1QG Coniroller

section of this thesis. There is & provision to modify *te
computed value of K by altering Qd (the covariance on input
Moise matrix) that appears in the matrix Riccati equation for
K. The modification is performed, when requested by the user,

by calling subrdutiné DASZ.

D=S2 (Fig A.16)

The subroutine DASZ, when called by DKFIR, perfgrms a
- modification to Q4 (the covariance of the input roise) that
is a modification to the Doyle and Stein technique that is
applicatle }o sampled-data systems. See section The Zoyvle

and Stein Technigue in Discrete-Time Systems - 2 in the body

of this thesis, for a description of this modificatior. DaS2

-is very similar to DAS1 and as in DAS1, the user choosss op-
tions in order to enter a scalar design parameter, 1o znier

2 matrix design parameter, to calculate the modified gd and

to exit the routine.

ProIRC (Fig A.17)

The subroutine PKDIRC, when called by CIQZR3, rarforms
+re necegsary inrut optiones and comrutations tc derive & ¥al-
N I P )

man filter gain X in the manner described in the ZInharcing

Robustness of Discrete-Time Systems by Directly Choosing K
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te w

Remove deterministic
states from controller
model if necessary

. See Perform Doyle and
below Stein robustness
1 enhancement technique,

modified for sampled-

Format equations for
¥leinman matrix
Aiccati equation solver

Compute Kalman filter
gain for modified
system

l

data IQG controllers
—_—

DAS2

mat _helman filter
mairix with C's

d ir. locations
responding to tne
terministic states

Fig #.15 DKFTR
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or no* to perform
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- - - v

~eed option- 1, 2, 3,

1- Enter scalar design
parameter, q

Z2- Enter metrix cesigr
parameter, V

3- Compute modifiec
Q(qg)

L- Exit *this routine

Flg ::.16 L=32




( FKDIRC , FRNAUG

Read Optioh 8 Q0
1, 2A, 2B, 3, 4 QA=
o R,
!
1-Enter scalar design G 0
parameter, q GCZA= cz
o 0 0
2h-Enter matrix design - ‘
parameter W
2B-Compute matrix dgsign1 RA= Bt Q
parameter W=(HEZ 'B4) 0 o
3-Compute and print steady- 1
= - i !
state K. =q@ " B W B G |
PXva=3|  ¥TC2 |
L-Exit this routine - |t
=cz
v
F_+BG _H B.G
( Return ) FAS ¢ T cz7t “tTex
— ' E
" gcz‘—‘t Ec
Fig 4.17 FKDIRC 5 -
= |—tC
BA= y
| Eey
Gh= gt gtgcﬂ
L 'C' gC!Z

( Return )

Fig A.18 FRNAUG
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section of this thecis. The user must specify the scalar
design paramezter, g, and one of two methods for choosing the
matrix design parameter, W. W can either be chosen directly

or can be calculated as in Eq (2.129).

FRMAUG (Fig A.18)

« The subroutine FRMAUG receives data in either the con-
tinuous-time or sampled-data IQG controller format and forms
the augmented metrices required by the performance analysis

algorithms described in both the Continuous-Time Performance

Lnalysis and the Sampled-Data Performance £fnzlvsis sections

~

of this thesis. That is, it forms Ea or &,, B, or gda{ ga cr

Ggar 9 or gda’ and Py

) for continucus-time systems.

avt

In addition, it also forms R.» G.zar gua, ga and G, are

simply Bt and G in the upper left partitions of R

’-i 3 G
“H Zez Bg 881G =¢

za

respectively. 4ll1 other elements in R, and cha are zero.

It is necessary to form R, and Goza in order to use the Klein-

man matrix routines which require that all matrix arguments
ve of the same declared dimension. Gua is formed out of ex-

pediency. It is the lower partition of the matrix.

[ ) ) ]
g-cz Et C‘—icz

vwrich appears in Egqs (2.47), (2.4G: and (2.50). With Qua
. . . - T . .. .

True ceflired, ... =G S _. Thiz elimirnates the ur-
cug celuned, 2% 60 By o S5a 1im u

ata
necessary multiplications associated with the upper partition

of the matrix above.

112




B Ty

PRIMIT (Fig A.20)

Note that gx v 2s defined in Eg (2.57) is calculated
at
only for continuous-time systems and then only when gcz in

Eq (2.27A) is not equal to zero.

STCRED (Fig A.19)

The subroutine STORED is called by PERFAL to format
data from the performance analysis subroutine, PERFAL, for
storage on local files. This allows the user to store data
as a permanent file dpon program termination and, later,
to recall the permanent files for printing or plotting as

reguired.

PRIMIT is an auxiliary routine used by DDTCON and
CDTCON for optimal deterministic controller gain calculations.
It -transforms a given system of equations with non-zero cross
cost-weighting matrices to an equivalent system of equations
with zero cross cost-weighting matrices. The requirement for
énd details of this modification are discussed in Appendix C.
CDTCON and DDTCON transform the resulting optimal feedback
gain matrix baék to a form consistent with the original system

equations.

MMATIO (Pig A.21), MVECIO (Fig A.22)

These subroutines are auxiliary routines that are

(s

calleld by most other subrcutines to perform input and output
of matrices and vectors respectively. Both routines perform

actions on the desired array/vector bhased on the value of
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]
i
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Fig 4.20 PRINIT

|
Fig 5#.19 STORED
VNATIC VVECIO
[}
Read input option 1
1, 2, 3, 14' 5 J
1-Fead entire array 1-Read entire vector %
; 2-Read/print entire 2-Read/print entire
array vector 5
i 3-Read selected array 3-Read selected vector
3 elements elements J
L-Read/print selected L-Read/print selected
. elements of array elements of vector
E~Frint entire array 5-°’rint entire vecitor |
. .
Fig A.21 DMNWATIO Fig A.22 NVECIC
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tnree parameters, 10, KIN, KOUT. XINK zné ¥KOUT tell the rou-
tires which file to read from or wriie to, respectively. 10
can have any of 5 values; 1, 2, 3, 4, 5. If I0= 1, the rou-
tines read all elements in list directed (and row by row for
erraye) format. I0= 2 rerformes the same read hu* zlso writes
out the entire array/vector. 1I0= 3 lets the routine read
selected elements in the array/vector. 1I0= 4 performs the
same read function as I0= 3, but it then prints the values
read. I0= 5 cawses the routine to print out the entire ar-
ray/vector. Note that if IO is any number than those listed
zbove, a call to these subroutines procuces no action other

thar. a return to the calling program.

AUGMAT (Fig A.23)
The subroutine ~UGMAT is an auxiliary rouvine used to

form augmented mairices. Based on the flzg IFORN, AUGHAT

either forms
or [A 5

B

wher, given the two matrices £ and ¥ ard their dimensions.
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(&L GIAT )

Read desired form— 1

or 2, read matrices
A and B

A

1-Form the augmented
matrix [ ]
1 4 B

2_Form the augmented

matrix A - -
B

Fig A.23 AUGNKAT
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Agpenaix B

Software Source Code

This appendix contains the FORTRAN V software written
as a result of this thesis. The FORTRAN V source code imple-
ments the flowcnarts trnat are specified and discussed Iin 4Lp-
pendix A.

- Table B.1 contains a listing of the variables as used
in the various sections of this thesis along with their FOR-

TRAN V counterpirts &s used 1in the software.

v
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TABLE B.1

Correspondence Between Variables in Thesis and
FORTRAN Source Code

Variables .{" FORTRAN Variables FORTRAN
as in Thesi Counterparts{l as in Thesis{ Counterparts
F. FT exp(-F at) EAT
By BT ﬁgGQGTde‘T’ INTGA
&y GT t
5 - [ IBr INTBA
Q QT P PXVA
Pt RT X Vy
= - - Gy GCX
F FM
L Goy GCY
E BM
- f - Coyp GCZ
=f o B BCY
e HM ey .

- B‘C z BCZ

Sr Q F FC

Zf RM : PEIT

3 WXX .

xx A 3 PHIM

1 WUU —m

-'.;du _ i _E_ FC

.' ; VYU c S
=¥ a3 DEITIW

S nam
g: Gu ol R -}—: X
o RKFSS s <
I Fa U 1 v
= 50 5. A pHI1g
z G4 _d
Zz B; BJ
e A 3 GUA
r er’X,""\k —ua
o " W W

(-4
3 PYA v v

"2 sQ
v MXT q

ECPS
z. EXT

PLI
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TABLE 5.1 (con't)

a, A "D" appended to the right side of the Fortran vari-
able indicates that it is an equivalent discrete-time repre-
sentation of khe variable. For example, BTD is the equi-
valent discrete-time counterpart of gtd.
b. A "T" appended to the right side of the Fortran vari-
able or expression that designates a matrix/vecior, indicates
that the matrix/vector is transposed. For example, HTT is
E3. - -

c. An "I" appended to the end of a Fortran variable or

expression that designazes a matrixsvector indicates =ra

ct

[W=N

the matrix/vector is inverted. For example, PEINI is g; .
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SDECK LOGRP

QOOOOOOODDOOO OAOOONDD

o000 o0

o000

PROGRAM LOGRP (OUTPUT*64, TAPEGOUTPUT, TAPEL 2064 TﬁPEiS-Gd,
{1TAPE1464,TAPELG 64, INPUT'G4 TﬂPEl.'iN“UT TAPEs64, T

TH]S PROGRAM PERFORMS A& A PERFORMANCE ANALYSIS FOR THE LINEAR QUADRATIC
gﬁg?S;a:cgog;ROLLERS DES’R!BED BY DUX)/DTeFX+BU+GU AND A GUADRATIC

e Ul
P::g:sHO:I#L sTILL DO A PERFPRMANCE ANALYSIS. THE HETOHODOLOGV is
T0 BE PU!L?S"ED UOLUME 2 OF STOCH, HODELS.EST AND CONTROL

MANY OF THE SUBROUTINES USED FOR MATRIX MANIPULATION COME FROM THE

ROUTINES COMPILED BY D. KLIENMAN(TR-75-4, ONR CONTRACT ¢
Koee14-75-C1067)

IN THE FOLLOUXNG PROGRRH TRUTH ﬂODEL MATRICES ARE TUO LETTERS UITH
THE LAST LETTER BEING -T- . CONTROLLER MODEL MATRICES ARE TUO
LETTERS TNDING IN -H- -T- FOLLOU!NG APARTICULAR MATRIX NANME
INDICATEE THE MATRIX IS TRANSPOSED. -1- FOLLOVING A PARTICULAR
MATRIX NARE INDICATES THE INVERSE OF THE MATRIX

IF DIFFERENT CONTROL ALGORITH®S ARE SUPPLIED TNE
PERF ANAL. SECTION IN CHAPTER 314 OF P, 5, BAYBECKS

COMMON BLOCKS MAIN1,MAIN2, INOU ARE REQUIRED BY THE KLIEMAN ROUTINES
-~—--INPUT FROM TAPE1E ~—---OUTPUT TO TRPEL1l

CHARACTER ;§3160
g.s

O
83
P R e
v
~D
[ L4
[ - P
. N>
[ old
out
~
..

Uy

CCSTR(S,S

,Ume(5,8),

£C18, 100, LAF C1¢,10),

L10),AXAL10),

10,102,

1000 ) .
(&,

ciee
iaxto 1e),
2N

Y, UV4L10)

<
'y -
B
wn
v
.
<
3
»
b
[
.
o
.
g
-

3
ra
.
5
s
’s‘E’s

®
e we *

NN~
- PP ot
5
[ =4
-
-
\0
-
"'I!
g
”~
TRNa D
<> He
o

) nuAl

o 35 90 90 Po 00
[ 24
[
®
g~
("-
TR
v o~ ar
Ut
I -

PXTH
1 RAtL10,10),8CY(S5,5
1un7¢5,$),UR8(5,5), URD(
INTEGER erccz TRy
REAL RUCE)

N /RNTIM/ RNTINE,DELTIM

: COHHDN /NAINZ/COMR

COMMON /NAINI/NDIM, NDIM{, COMY

COMMON ~# INOU/ KIN,KOUT,KPUNCH

COMRON IHGIN41N01H2 NDIM3

COMMON /NAUNS/ N

COMMON /BAING/ ICIT ICBM, ICFR, ICGR, ICGM, ICGT, ICOA, IRFA, IRFN, IRFT,
1 IRHT,1IRGA,10,L0G, IRHM,NUNDTS

g"Uv

"'-
§:z

.un:o(s.§>,u

DATA UMe,UMB,UMC, UMD, UNE,UNF /600%e.08/

DATA QA,COMY, COHE FAR,BR, GR PXR,PXVR 7800%8.06/

DATA W3,UV4 s2020.08/

DATA UHI.UHZ,UR3.UH<.UH5.UHG.FT.BT.GT,HT /725020.8/
DATA UUU,UXX,FH,BR,GN,PO,QT,UXU 720020.0/

DATA RT,GCSTR,RKFSS,GCX,GC2 7125%8.0/

DATA LUV1,UV2, X0, RXA, AU  /30%0.9/

DATA RN,QN,HA /75%0.0/

DATA IFLGCZ s@~/

KINe10
KOUT =6
KPUNCHe7
HDIN=G
NDIRLie6
NDIn2-10
NDIR3=1000

ZXTTTITTTNAIN PROGRAR FOLLOUS 3x32X33

Co=== IMXX, ICXX INDICATE ROUS,COLUMNS OF MATRIX XK

ano

CZRITITHIS PROGRAN CGN HANDLE UP TO 1000 DIFFERENT COMBINATIOS OF

UNTINE,DELTIR,AND UNSPECIFIED PARAMETERS
DO 2932 LOO'l.i.OO
URITE(KOUT,23)’ °
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)

s . FORMAT(AL,/)
2 FORMAT(RL ) ..
URITE (KOUT, )/ THIS 15 RUY NUMBER ¢ ,L0G
call INPUTH(FT,!T,GT,KT.FH.UH,GH.HH,PO,GT,GH,R1,an,xo,
1 WY, UXX, UXUD

IF (10.EG.8) THEM
¢o T 2§23

END IF

CALL ncs‘ccstn,ntrss.ccx,ccv,ccz.scv,ncz.rc.vb,

:un:.una.una.un4.uns.una,un7.une,un9,unze,uux,uuz

1usn,unn,unc,uno.un£.ua=.rr,st,cf.uT,ow,RT,

1 rﬁ,pn,cn.u..an,un.xo,ro.uxx,uuu.uxu.Fa.th.Qa,Oﬂ.GUﬁ.

1 MXA, PXA,RR,PXVA,GCZA, &Y, IFLGCZ, IFLGSD,

anu,vuaax,puzln.thnax,pxtnlu.nunax.nunxn,nxanax,nxanxn,
PUOUT.PXTOUT,HXTOUT.nuouT,UUE.Uua)

WRITE(KOUT, 23’ *

URITE(KQUT,22’D0 YOU WISH 10 CALCULATE THE EIGENVALUES OF THE CLOS

SED-LOOP STATE TRANSITIOR PATRIX USED IN THE PERFORMANCE ANALYSIS

1(ﬁPPLICaBL§DTO $OTR THE CONTINUOUS-TINE AND SAMPLED-DATA CRSE)

rd

t v 0

READIKIN, 3RINSG

IF (MSC.EQ.’Y’) THEN

luiazﬁ(KguT.!)'?NE CLOSED~LOOP STATE TRANSITIOR NATRIX £ IGENVALUES
®SAVSNDIN

KD IMeNDIN2 -

Npini=nDIR2+1

caLl HE!GN(UHA,UUB.UUA,1RF&.UHE)

NDIMeNSAY

NDIRLI=NSAU+1

END _IF
3§§¥§§§33;'§).r;95 Yo BE

) vy Yo RFORM TH
LN TO SKIP ITY o £ COURRIANCE ANALYSIS, TYPE
READ(KIN, 12)NSG
IF (MSG.EQ. /N’ ITHEN . .
Qo _TQ 2632

END IF

CALL PERFAL( xnv.1FLacz.nxa.ch.cua.an,qua.IrLcsn.

1 aa.ccza.vn.una.unt.una.unr.u«c.un * RUOUT, AXTOUT , PUDUT, PXTOUT,
uﬁxanﬁm,,nxnmx.PKVHIN.PXTHAX.HW:N.HUMX,PUHIN.PLHGX.!\U.U!\C.

2932  CONTINUE

2933 gﬁgTE(&OUT,tx'PROGRaH TERMINATED, NO NORE_INPUT DATR

[

3DECK g&%ﬁ%ﬂ?;n& STORED( IUCHRN, RNTINE, DELTIS tFsTCL, 151252
’

1 zsassz.xsz4sz.xs:ssz.éxoaxz.§10u13é§12214.%Igg:g.ﬁgggf;

T pLOT DATA T L FILES. . .
CTHIS SUBROUTINE S $§5214L$“p515 rog %gggaﬂsur ShoRAGE, _15XXS2 1S THE SI2E IF THE
DATR ARRAYS,STORKX. WDIR 16 THE CALLING PROGRAR DINENSION OF
THE ARRAYS. NOTE THAT RUNTIPERDELTIAE ~GIVES THE TOTR
Rt poprt T8 R, IS o HE

) .

DATA TALE atT i § THE WININRUN UALU THE DATA IN THE FIL

NEXY TO LAS ENTRY 1 £
DINENSION 9TOR12(NDXH€),STOR!3(NDXHS).STORIQ(NDIHS).STORlS(NDIHG)
2INOY”, KINK KXPUNCH .

FsYaXelaXed ol

URITE(14,1¢4) MR, RNTINE , DELTIR, 151452
*Set) 1uCHeN, RNTIRE.
1gy  FORMATC’ tU110,1%,2E19.6,1181

END IF
$F (IFSTCL.LT.®) THEN

¢ CLOSE FILES aND PUT END OF FILE MARKER OR THER.
cL

CLOSE(%!.:R:-&O)
LOSE(14,ERR=18)
CLOSE(tS.ERQ-10$
RETURN
END IF
uRtYE(:a.xoa)(SToaxa(x).I-S.IStzsz)
axrstxa.xoa)(swoaxaxx1.!-1.151:5:;
ITE(14,102)(S7 (1),1e1,151482)
URITE(tS.loa)(STOR (1).1-1.151552)
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RETURN
1@ URITE(KOUT,2)‘AN ERROR HAS OCCURRED IN THE STORED ROUTINE-
182 FORMAT(3(4(’ “,£15.6,1),7))

END
TDECK INPUTR
SUBROUTINE INPUTN(FT,BT,GT,HT,FM,BR,GN,HN,P0,0T, 0", RT,RN, X0
1, WUU, UXX, U%U )
CHARACTER NSGE60,MSG1XSe
REAL FTCNDIM,NDIN),BT(NDIM,NDIMI,GTCNDIN, NDIM ), HT (NDIM, NDIN), HH(ND
11N, NDIM),QN(NDIN, NDIM),RM(NDIN,NDIM), XO(KDIM),
1 WUU(NDIR, NDIK),UXX(NDIM,NDIR), FR(NDIN, NDIR), BN (NDIM, NDIN),
1 GM(NDIM,NDIN),UXU(NDIN, NDIN),
1 POINDIP.NDIN),GT(NDIN, NDIH),RT(NDIH NDIM),CONL(L),C0N2(1)
COMMON /MAIN4/NDINZ, NDIN3
COMRON sMalN2/Ccone
COMNON ~MAINL/NDIM,NDIM1,CON1
COMNON ~ INOU- KIN,KOUT,KPUNCH
COMRON /MAUNS. MSG
COMMON /MAING/ ICBT,ICBM,1CFA,1CGR, ICGN, ICGT, ICQR, IRFA, IRFA, IRFT,
1 IRHT,IRGR,10,L0G, IRHM, NURLTS
HSGI"x:xxx----~xxxxx-s—--xxxxx----—xtxx:-----xx:
1CFT~IRFT,ICFNe IRFM, IRBT« IRFT, xaan-xnrn IRGT« IRFT, IRGRs [RFR
IRX«IRF, IRG=JCQ« ICGM, IR ICR~IRHT, IRUXX=JCWXX» IRFN,
= IRUUYY TEWUU= ICBM, ICHT s IRFT, ICHMe IRFN, xnccz-xcsr 1c8C2-IRMT,
10 IS A INPUT ROUTINE PARAMETER--1aREAD, 2READLPRINT
3¢ PRINT ONLY, 4+PUNCH

NSAU=HDIRY
"NDIML=NRDIR

[ TeleXelo N od

IRXsIRF, IRG=ICOs ICGM, IRR ICR IRNT, IRUXX = JOCUXX » IRFM

10 18 A INPUT ROUTINE PARAMETE
3 PRINT ONLY, 4¢PUNCH

NSAUVeNDIRY
" NDIRieNDINM
IF (LGG.EG.1) TﬂEN
URITECKOUT, T IMSC
URITE(KOUT, 8)'THE 170 OPTIONS ARE @,1 rsesves -
URITE(KOUT,X)’1-RERD ENTIRE QRRAYIUECTOR E-éEﬂD AND PRINT‘
VRITELKOUT,2)'ENTIRE ARRAY/VECTOR, 3-READ,AND 4-READ AND PRINT’
WURIT (KOUT.Z)’SELECTED ARRAYVECTOR ELEHENTS. S PRINT ENTIRE"
JRITE(KOUT,2) ARRAY/VECTOR. 6 OR GREATER NO MORE INPUT TO’
WRITE(KOUT,Z)’BE MADE.’
WRITE(KOUT,3 INSCE
VRITE(KOUT,2)'SELECT UKICH MATRIX YOU WISH TO ENTER.’
URITE(KOUT,X)’BY ENTERING THE APPROPRIATE NUMBER. 1-FT,2-BT-
MRITE(XOUT,3)’3-GT,4~HT,5~-FM, 6-BN,7~CR, 8~-HN,9=-PO, 10-0T,l1-RT 2’
’URITE(KOU? 8)'12-0H lﬁ-Rﬂ.24'XO 15-UUU,SS-UXK,17—UKU 18-EQUATE ALl

URITE (KOUT,2)°CONTROLLER MODEL MATICES TO THEIR *
URITE(KOUT.X)'?RUTN MODEL COUNTERPARTS, 19~---= NG MORE DATA’
URITE (KOUT,Z)’ENTRIES TO BE MADE, 20~-STORE ALL MATRICES ON TAPE?’
WRITE(KOUT,X) 21~ READ ALL MATRICES FROM TRPES‘
URITE (KOUT, £)IRSGL
URITE(KOUT.!)HSG!
WRITE(KOUT,X)* ¢
WRITEC(KOUT,X)'FOR SANPLED DATA MEASUREMENTS,ENTER EITHER A CONTINU
10US RM TO USE TO APPROXIMATE THE DISCRETE TIME RMD(RMDeRN/SAMPLE
$TINE) OR ENTER THE DISCRETE TIME RMD’
WRITE(KOUT, X JNSGY
WRITE(KOUT, 2 INSGL
EMD IF
DO 982 INPUT+1,1000

VRITE (KOUT,33333) *

33333 :g¥¥21(36: 27)
X 2)'ENTER CODE FOR WHICH ARRaV/ ’

READIKIN, ELAM N Ic RAY/VECTOR TO BE INPUT)

GO T0(1,3,3,4,5,6,7,8,8,10,11,18,13,34,15,16,17,18,15,20,21 ) 1UCHMA

¢ .
CTTeTRUTM MODEL INPUT
: WRITE (KOUT, %) 'ENTER-1/0 OPTION, FT MATRIX $12€5°
READ(KIN, X, :uo-ev»z LIRFT
MSGe *TRUTH MODEL F MATRIX ENTRIES
CALL MMATIO (FT,IRFT, xart.xo.:x«,:ouv NDIN,NDINY)
IF (10.£0.0) 7 ™HEN

END _IF
60 70

=+~i*READ,2*READLPRINT

DOOOO
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2 WURITEC(KOUT,X)‘ENTER-1/0 opvxons. COLUMN SIZE OF BTY’
READ(KIN,X,END=27)10,1CB
MSGs’TRUTH MODEL B nnTRxx ENTRIES’
CALL MMATIO (BT, IRFT,ICBT,10,KIN,KOUT,NDIM,NDIMS)
IF (10.EG.81 THEN
RETURN
£ND IF
3 uS?vE?x§3$ )’ENTER-1/0 OPTION, COLUMN SI
2 -1/ . CO SI2E OF GT)*
READ(KIN, 2.END=27)10, ICCT
TR TRt Cet i TSER. SO kinesour
L [ " n
’F,61° .€Q.8) THEN M. NI

END_1IF
GO TO 982

4 URITE(KOUT, X ) 'ENTER- 1/0 OPTXON. ROU SIZE OF WY
READ(KIN,2,END+27)10,1
nSGs ‘H MATRIX ENTR!ES
CALL MRMATIO (HT, IRHT,IRFTY,I0,KIN,KOUY,NDIR,NDINS)
IF_(10.€G.8) THEN

END _IF
GO _TO
CXERINPUT CONTROLLER MODEL
3 WRITE(KOUT,2)'ENTER-1/0 OPTION, FM MATRIX SIZE>’

READ(KIN,3,END~27310, IRFR
MSUe/CONTRCLLER MODEL F PBATRIX ENTRIES'
t\E{)X"I’E(KOUT.I)'ENTER THE NUMBER OF DETERMINISTIC STATES IN TMIS moD

READ(KIN,$,END=27 JNUMDTS

call nmaf1d (FR, IRFM, IRFM, 10,KIN,KCUT, NOIN, NOIME)
IF (10.EG.0) THEN

RETURN

" END IF
o0 70 $82 .
6 URITECKOUT,X ) ENTER-1/0 OPTION, COLUMN SIZE OF BN~
READ(KI"'3aé:§;e;3§gnxc’:arazx ENTRIES
NSGe *CONTORL
ngl MSATIO (BRM, IRFM,ICBM,I0,KIN,KOUT, MDIN, NDIML)
IF_(10.£0.8) THEN

£ TURN
Bl
? UREITE (KOUT, %) ‘ENTER-1/0 OPTION, COLUMM SIZE OF CM>’
SRR ey et
5Ge’
call MMATIO (GM, IRFM, ICGH, 10, KIN,XOUT,NDIR. NDIRL)
IF (10.EG.8) THEN
RETURN
END_IF ,
G0 _T0 982
g URITEC(KOUT,2) ENTER 1/0 OPTION,ROW SIZE OF M)’ ~
READ(KIN,2,END=E7)10, IRHN
MSG~ ' THE CONTROLLER MODEL MEASUREMENT MATRIX, O'H, 15’
CALL RMATIO(HM, IRHM, JRFR, 10, KIN,KOUT,NDIN, NDIRL)
If _(10.€0.9) THEN

RE

ENDIF

GO T0 $82

URITE(KOUT,23’FT MUST BE ENTERED THMRU OPTION 1 PRIOR TO USING THIS
I0N.DO_YOU UISH TO AIORT THIS OPTION, ¥ OR N>

‘REQD(KXN s, END-E? INSG
IF .£q.°

) THEN
23 rg 982
WRITE(KOUT, ) ENTER I+0 OPTION,IRFT 1S ASSUMED SIZE OF POY*
READ(KIN, 3, EHD=27110 .
*THE INITIAL COVARIANCE MATRIX, PO, 1§
Sﬁfi nnEr%o (PO, § th.:nrr.xo,xxu.zéuv,unxn ROIMS )
IF (10.EG.83 THEN
RETURN

x E E [

HSG"TO‘E NPUT NOISE STRENGTH MATRIX GT 1S°
CALL RMTIO (OTE'ECGT »1CGT, 10, KIN,KOUT,HDIM, NDINY )

IF (!0 €e.8: 7
RETUR

END IF

G0 TO 982
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11 URITE(KOUT.X)’ENIER 170 OQfXON.IRHT 1S RSSUMED SIZE OF RT)’
READ(KIN,2,ERD=E?)10
RNSGe ' THE MERSUREMENT NOISE STRENGTH MATRIX RT 15°
CALL NMATIO (RT, IRKT, IRHT,IO0,KIN,KOUT,NDIF, NDIRS)
IF (10.EG.@) THEN

$82
1e VRITE(KOUT,X) ENTER I/O OPTION, ICGM IS ASSUMED SIZE OF QR
READ(KIN, 2,ENO'27
MSG= ‘' CONTROLLER HODEL INPUT NOISE STRENGTH MATRIX, oM
CALL mMaTIO(GN, ICGM,ICGM,10,KIN,KOUT,NDIM, NDIML)
IF (10.EG.8) THEN
RETURN
END IF
GO TO 982
13 WRITE(KOUT,X)’ENTER 170 OPTION, IRHM IS ASSUMED SI2E OF RM>*
READ(KIN,Z,END*27)10
nSGs *CONTROLLER MODEL MEASUREMENT NOISE STRENGHT MATRIX, RR‘
CALL MRATIO(RM, IRWF, IRHN,10,KIN,KOUT,NDIR,NDINY )
gF 6;3 .EQ.@) THEN

END IF

GO T0 eg2
14 uaxrtcxour X)'FT PUST BE ENTERED THRU OPTION 1 pnzon T
1 OPTION. DO YOU UISH TO ABORT TWIS OPTION, Y OR 0 USING Th1S
READ(KIN,$?, END=27 M50
IF (M sc.so.'v ) THEN
GO TO 98
ENSR%;E(KOUT )'ENTER 170 OPTION,IRFT I
b 4 /7 N, S ASS ‘
READ(KIN,X,END27 UNED SIZEOF x0>
BSGe ‘THE INITIAL svarz VECTOR, X0, 1§-
CALL MVECIO (X0, IRFT 10,KIN,KOUT,NDIR) . .
IF (10.EG.@) THE

RETURN
END IF . )
15 GRITECROUT,Z)/BN MUST BE £
’ BE ENTERED THRU OPTION 6 OR 17
1G_THIS OPTION. DO YOU WISH TO ABORT THIS OPTION, Vv FSIOR ;o ust

READ(KIN,97,END=27)MSC

IF_ (MSG.E0. ¥’} THEN .
GO TO 982 ¢ ‘
END IF :

WRITE(KOUT,X)ENTER 10 OPTION,ICBM IS RSSUMED SIZE OF WUU)*

READ(KIN,%,END=27)10

MSG=‘THE CONTROL FUNCTION COST UEIGHTING MATRIX, WUy’

CALL MMATIO(WLU, ICBM, ICBN, 10, KIN,KOUT,NDIN, NDIHl)
IF (10.EQ.8) THEN
RETURN

END 1F °
GO TOS82 ‘

16 URITE(KOUT,X)°FM MUST BE ENTERED THRU OPTION S OR 17 PRIOQ TO USIN
1G_THIS OPTION. DO YOU WUISH TO ABORT THIS OPTION, Y
READ(KIN,97,END=27)RSC

IF (RSG.EQ.’Y’) THEN
GO0 TO 982

END 1IF

URITE(KOUT,2) ENTER 1,0 OPTION, IRF ‘
READCKIN. £ END- o975 30 IRFA IS ASSURED SIZE OF Wxx)

ChEL a4 AT TR S .
IF (10.€G.0) TMEN JKIN,KOUT, Nnxn NDIM1)

RETURN

END_1F

G0 TO $82

18 URITE(KOUT,2)*ALL CONTROLLER nODEL MATRICES MAVE BEEN SET EGUAL TO
1 THEIR TRUTH MODEL counten
URITE(KOUT,2)°FT,BT,GT,MT,0T, RT MUST BE ENTERED PRIOR TO USING THI
1S OPTION. ~THE NUMBER 6: bzrsnnxnzsrxc STATES MUST BE ENTERED IN
1 THIS OPTION(FOR CONTROLLER MODEL).
URITE(KOUT,2)’ DO YOU WISH TO RBORT THIS OPTION,Y OR N)'
READ(KIN,9?, END=27)MSC
IF (MSG.EQ.°Y’) THEN ]
GO T0 982

ND IF
ERITE(KOUT.!)'ENTER THE NUMBER OF DETERMINISTIC STATES IN THE CONT
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bard

a3

1ROLLER MODEL>’

READ(KIN,X,END=27 )NUNDTS

IRFMeIRFT

FORMAT(AL)

ICBM-ICBT

ICGN=1CGT

1 IR

CALL EGUATE(FN,FT,IRFT,IRFT)

CALL EQUATE(BM,BT,IRFT,ICBT)

CALL EGUATE(GM,GT,IRFT,ICCT)

CALL EQUATE (MM, HT,IRNHT,IRFT)

CALL EQUATE(QN,QT,ICGT,ICCT)

CALL EGUATE(RN,RT,IRMT, IRRT)

GO 70 982

URITE(KOUT,$)’NOTE THAT FM AND BM MUST BE ENTERED THROUGH ﬁPPROPRX
1ATE OPTIONS PRIOR TO EXECUTING THIS OPTION. DO YOU WISH TO ABORT T
1HIS OPTION, ¥ OR

READ(KIN,97, END-&?’HSG

IF (MSG.EQ. Y’ )THEN

GO TO sse

IF
URITE(KOUT Z)’ENTER 170 OPTION, IRFM X ICBN ASSSUNED SIZE uxud’
READ(KIN, X ,END=27)10
NSGe ‘RHE CROSS (STATE-CONTROL) COST UEIGHTING NQTRIX. Xy’
CALL MMATIO(UXU,IRFN,ICBM,10,KIN,KOUT,NDIN, NDINS)
IF (10.EG.@)THEN
RETURN

END IF
CRITE(BO0T,X)¢ THIS OPTION STORES ALL MATRICES
x)’ ALL MAT ON TO TAPE?
1 UISH TO ABORT THIS OPTION,Y OR N)* PE?. DO vou
READ(KIN, §7 )MSG
IF (RSG.EG.’Y’ )THEN
G0 TO 982

END IF
URITE(?7,X)IRFT,ICBT, ICGT IRMT, IRFH,I

CBN, ICCR, IRHM, NUNDTS

WRITE(?7,X)((FT(I,J),J=1, IRFT) I=1,IRFT), ((BT(1,J),J=1,1ICBT),1s 1 IR
1FT), ((GT(Y,J),Js8, ICGT) =1, IGFT) ((HT(1,J),J0°8 IRFT) 1=1,IRKHT)
l((FH(I.J).J'l IRPH) 1=1, IRFH) ((BH(I.J),J-I.ICBH) I=1,IRFM)
URITE(?,!)((Gﬂ ’ ).J'I.ICGH).I 1,IRFM), ((HA(],J),J=3,IRFN), l-l.IR
1HR), ((PO(I,J),J-!.IRFT).I-I.IRFT),(XO(I),I'I.XRFT) ((UUU(I,J
1=Je I.ICBH),I-i,ICBﬂ),((UXX(I.J),J-i,IRFH),I'l.IRF
YRITE(?,22((QT(1,J),J=1,100T), 1«1, IC0T), ({RT(1,J), =8, IRHT), Iy, IR
1HT), ((ON(I,J),J-i,lCGﬂ),lli.XCGH),((RH(I,J).J-i,IﬁHH),I-l,ZRHH)
gg!;%(ZQQ)((UXU(I,J),J-i,XCBﬂ).!'l,IRFﬂ)

VRITE(KOUT,X)’ THIS OPTION READS ALL MATRICES FROM TAPER, DO YOU
1 UISH TO ABORT THIS OPTION, ¥ OR MN>*

READ(KIN,97)NSG
IF (MSG.EQ.’Y’) THEN
GO TO S8e

END_IF
WURITE (KOUT,%)’D0 YOU WISH TO REUIND TAPEZ BEFORE THE READ,Y OR N>
READ(KIN,57)mSG _

IF (MSG.EQ.’Y’) THEN .

sNDaggxun«a) , .

READ(8,%,END=10033}IRFT, ICRT, xccr IRHT, IRFR, ICBM, ICGR, IRMM, NURDTS

READ(E,X,END=10033) ((FT(1,J),0e1, IRFT) To3, IRFT), ((BT(1,J).de1,ICB

1T, Is1,IRFT), ((GT(x,J).J-x.ICGT) Iei, IRFT), ((NT(E,0),J01, IRFTI 101
IRHT ). CCPmcE, ),J-l,IRFH) 1vy, IRFRY, CoBneh, 00, Jel, ICRM) L 101, TRFR)

ﬁEﬂD(S b END-& 33)((0H(X.J) J'l ICGH) 1=4,IRFM), C((HP(L,J),Je,IRF

M), 13, I&HH) [§4 O(I.J).J'i.IRF\) I'l.IRFT) (XO(1),1e1,IRFT), ( (WUUC

1 1,0),3.1, xcsn).x-z,zcsn).<xuxx(z Jaide1, IRFM), To1, IRFI)

READ(B, ¥, END=10033)C (QT(1.J), iccT) 1e1,1C6%), CIRTCI,d),Je1, IRK

xrx,x-z.xnnv; ((OH(I,J),J-x,ICGH) 1+1,1CGR), C(RR(E,3),Je1, IRHN),

{ lei,IRHM

RSGD(Rélgt(UXU(I o )0Je L, ICBR), 10y, IRFR)

G
3:233 URITE(KOUT, tc)ésN? OF, FILE ENCOUNTERED DURING READ OF TAPER’

19

CONTINUE

" NDIMieNSAY
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sDECK NMEIGN

SUBROUTINE MEIGN(A&,AREV, ﬁIEU CURSZR,UNRY)

CHARARCTER PMSG160

DINENSIONA(NDIN, NDIH).&REU(NDIH) AIEV(NDIR),UML(NDINM,NDIN)

DIRENSTION COHl(l) consg (

comnon /HAIN‘/NBXH ND;PI C011

COMMON ~ INOU/ KIN,(OUT.KPUNCH

COMAON /MAINZ2/ COM2

COMMON /MALNS/ MSG
C  THE CALLING ROUTINE MUST SUPPLY A WORKING MATRX NDIM X NDIM ~-Unj
CXXXFIND THE EIGENVALUES OF A ,NR=0 TELLS THE ROUTINE TO CALCULATE
g RDIR mMUST BE TEEG%?:ng;gNOS#V 1

£ N THE CALLING PROGRA™

c ngEZﬂ IS THE CURRENT SIZE OF A

Ci=1.0

CALL IDHT(CURSZA,WUM1,C1)
C UMl I  CURS2A X CURSZA

?gLé EIGEN(CURSZA, A, RREV,RIEV, UNL , KR)

NSAU-NDIRY
NDIL =N IN
MSGe ‘REAL PARTS OF THE EIC .
CALL mUECIO (AREV, cuRs24, Ig?g?N.KOUT NDIN)
RSGsIMAG PARTS OF THE EIGEMUALUES
. L MUECIO (RIEV, cunszn 16, KIN. KOUT , NDIN)
NDIN] =NSAY
ND
EDECK COTCON
SUBROUTINE CDTCONCFM, BN, UX
NI S £ b, 5§gggyocsrn.xnrn.xc:n.un:,una.

* DIMENSIONFF(NDIN,
’pfﬁgzgfgﬁx"' NDIN.NDIN), UXX(NDIN,NDIN), BN (NDIN, NDIN) +MUUINDIN, NDIN )
unz«nwzn.~azn; VA2 (N,
113}xun5tnnzn NDIF), UMSINDIM, un?gs 3257§nxr3§g?§? ;NOIR), UN4 cHDIM, N
RM(NDIM.NDIR) rpnxn(npxn NDIR) "
DIPENSION conzcx) comz :
COMMON sPAaIN2/CONS )
COMMON znaxnxrnnxn NDIN1,COML

COMMON ~ INOU/ KIN
COmMON “MAUNSS HSG.xou'r , KPUNCH

TLIDETERNINISTIC CONTROLLER GRIN CALCULATION-~-MODULE 2 ¢

THIS MODULE COMPUTES THE STEADY STATE DETERHINISTIC CONTROLLER
GRIN MATRIX,GCSTAR= (WUUI)(BMT)I(KCSSPM)I, \WUUI IS THME INUERSE OF T
CONTROL COST WEIGHTING MATRIX, KCSSPM 1S THE STEADY STATE
SOLUTION TO DIKC3/DTs=(FRT)IKC I+ (KE ) (FMIeWXX~(KC)(BM)(WUUT ) (BIT )2
(KCJ), WXX IS THE COST WEIGHTING MATRIX ON THE STATES

KLIENNAN ROUTINES ARE EXTENSIVELY USED IM THIS MODULE
C TRANSFORM SYSTEN SO THAT UXU NOTs06 CAN STILL BE HﬂNDLED BY

C KLEINMAN ROUTINES, SEE KWAKERNAAK AND SIUAN’S BQOK, PACE 322

ChLL PRIMIT{URL, WU, ICBN, CCSTR,LUXY, IRFN, BN, UM, FPRIM, XX, UXXPRN,

€ NOU NQUE FPRIM, UXXPRM CAN USE RICCATI SOLUER FOR KXCSSP®

NTe1
CALL TRAHSZ(IRFR, ICBN, BN, WM2)
¢ umz-EMT " 1CBA X
CALL EQUATE(WRE, Quu, 1can 1C8)
€ GMINV DESTROYS YHE CALLING ARR
CALL GNTNUCIORR, TCBR. U1 URa AR, AT )
¢ una-uuux ICBN X ICBN--~eeeMR 1S AN ERROR INDICATOR
IF (WR.NE.ICBN) THEN
PRINTZ, ‘AN ERROR OCCURRED IN INVERTING WUL, MRe,MR, ICBNe’,10HM

END IF
CALL EQUATE (Un1, W3 163N, 1681
C WMIeWUUS SAUE F Lafe COMPUTATIONS
ENLE maTYCuRs une ICBA, 1CBR, IRFA, Um4)
C UMes (UUUTI(BAT) SCBN° X  §RF
¢ NOU CALL RICCATI ecuarxou LUER
. CALL MAT1(BR,uUnd,IRFR, ICBN xnrn un3)
C UM3eBPMIMULII(BMT) IRFM X IRFA
CALL RIC(IRFA, FPRIN, UM3, UXXPRM, UN2, UM6 )
C UMEeKCSSPR  IRFM X IRF
¢ uns-rn-tn(uuux:(:nr:ttcssrn;---x DONT USE THIS RESULT
?gc;'xcsspn FOR THE DETERMINISTIC CONTROLLER 1§°

AN O O
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NSAUYNDINL ..

NDIRS=NDIR

CALL MMATIO(UMZ, IRFM, IRFR, 10,KIN,KOUT,NDIN, NDIRY )
¢ NOU CALCULATE OPTIMAL GAIN'MATRIX GCSTAR, MNOTE 1 WEED THE
c NEGATIVUE OF GCSTAR FOR TME SONTROL LAY GENERﬁTION FROM AN LOC
c CONTROLLER, AND THIS WILL BE THE GCX REGUIRED IN THE PERFORMANCE
¢ ANALYSIS ROUTINE

NDINLsNSAV
€ NOW MAVE xcssPn ., CALCULATE GCSTR=WUUI(BNT(KCSSPH)I+UXUT)
C REC:%L‘UgUI N Unt

CALL MAT4A(BN, UNMZ, ICBRM, IRFN, IRFN, UN4)

CALL TRANS2(IRFM, 1CBM,UxU,ul3)

CALL MADD1(ICEM, IRFM,UmM4,UM3,UM2,C1)

CALL MAT3(UMI,UR2,1CEM, ICBN, IRFR,GCSTR)

NSAVsNDIRL

NDIMLeNDIN

105
g GCSTR ICBN X [IRFR

n5Ge"THE OPTIMAL STERDY STATE FEEDBACK GAIN MATRIX, GCSTR’
Cs%k H:2;50(GCSYR » 1CBN, [RFA, 10, KIN,KOUT,NDIR,HDINL)
NDIRL»

END
TDECK CKFTR
SUBROUTINE CKFTR(FM, G, R WL, NUNDTS, RKFSS 0 UMY, U2,
1UR3, UN4, UPS, URE, TRFM, TRHA, xécn,ra,ue.:n.icin:
CALLING PROGRAM MUST SUPPLY EIGHT WORK SPACE ARRAYS

THIS RCUTINE CQLCULQTES THE KALMAN FILTER GAINS WUMEN
GIUVEN THE FAR, MM, GM AND R MARTRICES AND THE NUH)ER OF
DETERMINISTIC STRTES.  TNE CONTROLLER MODEL
SPECIFIED SUCH THAT RLL THE DETERHINISTIC ST&TES RPPEhR
FIRST AND TOGETHER,  THAT

B/DT(XL,X2, ... XK, XL, xn,...xurrf: '; zl
UHERE X! THROUGH XK ARE THE nsmnx snc ATES mn T™E
nsnnmmc s'rn'res ARE STOCHASTIC. F1 X K, AND F2 IS N-K X
N-K, B2,AND G2 ARE PﬁRTITZOP(D accoaaxucx.
THIS ROUTINE FIRST STRIPS OFF THE DETERMINSTIC STATES THEN COMPUTES
CanD RETURNS KALAMAN FILTER GAINSFOR THE REMAINING STATE

S.
THE KALMAN FILTER GAINS FOR THE DETERPINSTIC STAES ARE SET YO 2€R0O
C AND THE KaLMAN FILTER GAIN THAT 1S5 RETURNED IS €

UHERE THE DIMENSION OF THE ZERQ VECTOR 1S K AND THE RKFSS IS THE
STEADY STATE KALMAN FILTER GAIN MATRIX FOR THE N-K STOCHASTIC STATES.
THIS AUGMENTED MATRIX IS RETUTNED 1IN RKFSS
ALSO NOTE THAT IN ORDER TTO GENERATE THE KALMAN FILTER, ON

REASURENENTS OF STACHASTIC STRTES ARE NEEDED SO THE H HQTRXX 1s

REDUCED ACCORDDINGLY.

CHARACTER RNSGXE0,M5G18L -

DINENSION FQ(NDIH NDIN) , HR (NDIM NDIN), FMINDIN, KN
1 R(NDIM,NDIN), HH(NDIH KDIR),WRi(RDIN,NDIM},Q(ND
1 una(npin, NDXH) UNSINDIH NDIH) UmA(NDIR, NDim),um
i ,UMGCNDIR,N
REAL RKFSS(NDIH ND!H),IH(NDIH NDIM)

DIHENS!ON comiti) (1)

COMRON /MAIN2/C

COMMON /NaIni/NDIR, NDINL,CORL

COMMON ~ INOU/ KIN,XOUT,KPUNCH

COMMON /MAUNS/ MEG

TEEKALMAN FILTER STEADY STATE GAIN----NODULE 8 2
RKFSS« (PMSS I (KRTI(RY), WHERE PM IS THE STEADY STATE SOLUTION T TH

RICCATI EAUATION B(PR)/DTeFAIPR)I«PHIFNTIeGR () (GNT )~
PMINRT) (RI I (KM (PR)

OOOONONNIONNOOO0

o

OQOOOONOD

—4‘4
3

22EXXEIDELETE DETERMINISTIC STATES, RAND ---TRANSPOSE TNE F2
NATRIX FOR THE RICATTI SOLUER SINCE IT TRANSPOSES THE CALLING ARRRY)
VRITE(KOUT,%)*IF YOU PLAN TO USE THE DOYLE AND STEIN TECHNIQUE FC
IR THIS RUN YOU MAY WISH TO MSDIFY THE UALUE OF NUMDTS, THE NUFBER
OF DETERMINISTIC STATES. DO YOU WANT TO CHANGE NUEDTS? ¥ OR N

1

REﬂb(KIN 118661

UnSASIIUIETS, ) v

URITE(KOUT,X ) 'ENTER THE NEW VALUE OF NUMDTS FOR THIS RUN>"
:530§K1N x)NUﬂDTS

DOOOOONHOOO
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-

IDS=NUMDTS+1
DO 2112 1-1DS,IRFM
11+1-NUMDTS
Do 2112 J Ins IRFA
JJsJ-NUMDTS
2112 F2WJdJ,11)eFmCI, )
1RF2+ IRFM-NUMDTS
DO 2133 ‘T+1, IRHN
DO 2113 J-1DS,IRFM
JJ=J-NUMDTS
2113 H2(1,d0)=HN(I, )
C NOU FORM B2,G2
DO 2114 1s1DS,IRFNR
I1e I-NURDTS
DO 2114 Jei,ICCK
2114 URL(IT,J)eGR(I, D)
Cumt 62 JRF2 X 1CCM
DO 211§ 1105, IRFN
LI=I-NURDTS
DO 2115 Jel, xctn
115 WmM4(ll, J)-BH(I
UN4 =B2 R i
IRHZe1
tALL na?:txara,tccn uMi,Q,uM2)

ﬂl\'

¢ Um2eGR(QI(GNT) IKEE X IRF2 --USED AS ‘G IN KLIENMAN RICCATI ROUTINE
URITE(KOUT,2)°D0 YOU WISH TO MODIFY G BY THE DOYLE AND STEIN TECNI

10UE, Y OR Ry’
RERD (KIN,11)MSGL

1! FORNAT(RY)

’ IF (mSG1.EQ.’Y’} THEN
CALL DASI(WME,um4,uny, ICBM, U 3, IRFN)

ENC IF
MTs$
CALL ECUATE(WMY,R,IRKZ, IRK2)

C GMINU DESTROYS THE CALLING RRRAY
CALL GRINV(IRHZ, IRH2,UM!,UN3, MR, NT)
IF (MR.NE,.IRH2) THEN
URITE(KOUT,x)’MRe‘,BR, ‘' IRHR=/, IRH2 .
WRITE(KOUT, )" R-INUERSE 1S FOULED UP’

END IF
C UM3» RI IRMZ X IRHR

CALL TRANS2(IRMHZ,IRF2,HZ,Un4)
C U4 H2ZT IRF2 X IRK2

CALL MAT1(UN4,Un3, IRF2, IRHZ, IRH2,UNS)
C UMSs H2T(RI) IRF2 X IRH2

CALL MATI(UMS H2, IRF2, IRHE IRF2,un3)
C Um3s H2T(RI)I(M2) iRF2 X IRF

CALL MRICUIRFZ2,Fe, UH3 une, Uﬂ
C NOW CALL RICCATI EQUATION SOLUERTO GET PMSS

C UNG-PNSS IRF2 X IRF2

CALL MAT1(UME,UES, IPFE IRF2, IRH2, UML)

c UHI-?gFSS IRF2 X IR

c FORF RKFSS WUITH ZEROS ADCED FOR DETER. STRTES.
PRINTE, ‘NUNMDTSe’, NUNCTS
IF (NUMDTS.NE.@)THEN
DO 2119 Jei, IRHN
DO 2118 1.%, NUHDTS
2118 RKFSS(I Jd)e
. 8!19 I;IDS o IRFA

213§ gf;ES(l oJIeUNICII, I
E:LLIEOUA7E(RKF$$ SN, IRFM, IRHM)

MSGe *STEADY STATE KALMAN FILTER GRIN MATRIX,RKFSS’
CaLL MMATIO(RXFSS, IRFM,IRHM,I0,KIN,KOUT, NDIH NDIM)

NUMD TS eNUMSAY

¢
END
tEECX FRMAUG

SUBROUTINE FRMAUG(Q,R,FT,BT,GC2,HT,GCX,BCZ, FC G*Y BCY,GT,X0,P0,

1 FA,BA,GA,GA, GUA, UNT,UM2, UmA, LB, UAC, u.o uns
1 WXA,PXA,RA,PXUA,GC2A, IRY, 1FLUSZ, IFLGSD

¢ THIS ROUTINE FORMS A SET OF AUGNENTED HGTRICES NEEDED BY THE

C  PERFORMANCE ANALYSIS ROUTINES

DIFENSION Q(NDIN,NDIR),R(NDIR,NDIM),FT(NDIN,NDIN)
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¢
¢
c
c
c
¢
¢

2ve3

cre4

c
165
6100

si10e

5101

5163

1,BT(NDIN,NDIM),GCZINDIN, NDIM) HY(NDIN,NDIN),GCX(NDIM, NDIN),
1 BCZ2(NDIM,NDIM), FC(NDIM, NDIN),BCY(NDIM,NDIM),GT(NCIA NDIN),
1 XOCNDIR),PO(NDIM, NDIR), UMIC(NDIN, NDIN),UNS2(NDIN,NDIN)

DIMENSION FACNDIM2,NDINM2),BA(NDIF2,NDIM2),GACNDINZ NDIN2),

1 GAINDIF2, NDIFR),UNAINDINZ, NDIM2),URBINDINZ,NDIN2),

1 UNCI(NCINZ,NDIM2), UMD(NDIM2, NDIMZ),UME(NDIM2, NDIN2),UnF

1 (NQIM,NDIN), GCY(NDIN, NDIM3, PXA(NDIHE.NDIHE) RA(NDIRR,NDIR2),

1 -GC a(nnxna NDIN2), PXUQ(NDIHE NDIHZ) GUA(NDIH2 NDIM2)

REAL HXQ(NDIHZ)

INTEGER IFLGCZ

CHARACTER MSGIE®

DIMENSION COM1(1),C0MR(1)

COPMON IRA!NQINSIHE NDIR3

COMMON /MAIN2/COMR

COMnON /MAINI/NDIN,MNDINE, CONYL

COMMON 7 INOU/ KIN,KOUT,KPUNCH

COMMON /MAUNS, MSC

COMMON /MAING/ ICBT,ICEM,ICFA,1CGA,ICGN, ICGT,ICAR, IRFA, IRFN, IRFT,

b IRHT, IRGA, 10, Lac, IRHH NURDTS

URXTE(KOJT 237 ENTER A § IF YOU UANT ALL THE hUGPENTED MATRICES PR
1INTED OUT, A 6 FOR NO MATRICES TC BE PRINTED)

READ(KIN,Z)I0

IRFA*IRFT+IRFN

NSAUL=NDIM

NSAUZeNDIML ™

NSAV3eNDIM2

NSAU4eNDINM3

LXIFORM AUGMENTED MATRICES THAT ARE REOgIRED WUHEN FORMING XA

YAe (UT UTOT IMPLIES TWAT GAe

FORM QR IRGA X 1IRGA, JRGAIRHT+ICCM
FOR EQUIVALENT DISCRETE TIME SYSTERS IRGARes IRFT+IRHT

IF(IFLGSD.EQ.@THEN : -
IRQ=ICGT

ELSE
IRGe IRFT
END IF
D0 2703 1:1,IRC -
DO 27e3 J'I.IRHT
uni(l,J)=0
DO 2764 I=1,IRHT

~D0 2704 J= 1.!R0

uma(1,J)e0
1FORM-1
NDIN3=NSAU3
NDIN2sNSAU1
CALL AUGNAT(UNZ,R,uMD, IFORM, IRHT, IRQ, IRHT, [RHT)
CALL AUGRAT(G,UM1,UMC, IFORM, IRG, IRG, IRG, IRHT)
1COA« IRQ+IRHT
1RGRs 1COR
IFORMS2
NDIR2-NSAU3
CALL® AUGRAT (LIIC, UMD, 0A, IFORN, 180, 1C0A, IRHT, IROR)
RSG- ¢ THME AUGMENTED G RATRIX IS ,QA’
CALL MATIO(GA, IROA, IRGA, 10, KIN,KOUT,NSAUS, NSAU3 )
INRSNSAU3-TRFT
INITIALIZE PXA MXA AND STORAGE UARIABLES
DO 5105 INXAeq,NSAU3
AXACIMXA )@
AT R W T
XA .
M5Ge* THE INITIAL XA UECTOR 1§’
CaLl muECTo(mxe, TREA, 10,KIN,KOUT, NSAU2)
D0 B1e1 IPX“‘i'g
02 JPXAw
Dont1PRA, Jsz)-PO(IPxn JPXA)
DO G101 JP -1.IM
JPXAe JPX+IRFT
PXA( IPXA, JPXA )@
DO 51¢3 IPXe1,IMA
IPXAsIPX+IRFT
D0 5163 JPXA-1, IRFA
PXALIPXA, JPXA ) R .
i NTITIAL COUARIANSE MATRIX, PXA I
A nzzgxé(nxn IRFA, IRFA, 10, KIN,KOUT, NSAU3, NSAU3)

-
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Ce2xPXUA CALCULATION--- REQUIRED ONLY FIRST TIME THI P
PXUR» 3T(6C2) ROUGH 100

'23C1 R

TO USE THE KLIENMAN MULTIPLY ROUTINES , THE DECLARED DIMENSION OF
ARRAY ARGUMENTS MUST BE THE SARE, THEREFORE IT 1S NECESSARY TO
FORN GCZA SUCH THAT GCZA(I,J)eGC2(1,J) FOR Isi,IRNT, AND Jef,
ICBR, @aND 2ERC ELSEUHERE
TNE'SGHE REQSON REQUIRES CALCULATION OF RA
1T=NSAV3-IRH
JT'NSQU3-1CBH
DO 6913 1G-1, IRHT
DO 6014 JGe1,ICBM
€eiq4 GCZA(IG JG)-GCZ(IG J6)
DO 6913°J¢ *1,J7
JGAICEN+JG
€813 GCZA{IG,JGR)Q

OODOOOOOD

DD 6815 JGe=1, NSAV3
€815 GC2A(1G1,JG)e0
IR*NSAU3<IRHT
BO 8017 !R!'!.IRﬂT
DO €047 JRIe§,IRH
6017 RAC(IR JRI)-R(IR! JRI)
DO 60616 JR L;l.

6016 RA(IRI,JRJ)=2
© DO 6038 IRI«1,IR
IRIIoIRI+IRNHT
DO 6318 JRlei, NSAU3
6018 RA(IRII,JRI)e=0
c Ra » R IN UPPER LEFT PARTITION,ZERO ELSEUMERE
IF(CIFLGCZ.EQ.¢).AND, (IFLGSD.EG.€)) THEN
C CALCULATE PXUA ONLY FOR 6CZ NOT EGUAL TO ZERO MATRIX AND NOT FOR §-D
C RECALL THAT (BT(GCZ) BCZ2)T 1§ THE RIGHR PARTITION OF G .
DO 6009 IPXA={, IRHT
IPA=IPXA+]1CCT
DO 6000 JPXAel, IRFA
60600 E§UﬁéJPXﬂ,IPXﬂ)-Gﬁ(JPXA.IPﬁ)
NDIM=NSAQU3 -
NDIR1-NSAU3+1
<CALL SCALE(UMF ,PXUA, IRFA, IRNHT,C1)
CALL MATI(UPF,RA, IRFA, IRHT, IRHT,PXVR) .
C PUXA»PXAVUT IRFA X IRKT
MSG»’ CROSS COVARIANCE, PXua 1S’
EGELI?HQTIO(PXUG.!RFR.IRHT.XO,KIR.KOUT,NSﬂUa.NSAUB)
N,

FA= Fall Faie -FT#BT(GCZ)(HTT BT(GLCX)
sFA21  FAZ2 +BCZ(WT)

WKERE GCZ IS5 THE GAIN MATRIX THAT ACTS DIRECTLY OX_THE NEASUREMENT
VECTOR, AND GCX 1S THE GAIN MATRIX THATS @CTS ON THE CONTROLLER
gESTE ESTXHQTES 23¥!XTHESL MJST BE SUPPLIED BY THE GAIN PATRIX

OO0

2TIFORN FA
NDIM{eNSAUL+1
NDIReNSAVL

CALL MATI(BT,CC2,IRFT,ICET, IRKT, UML)
C UMIsBT(GCY) IRFT X IRNMT

CALL MNAT1(UF{,HT, IRFT, IRHT, IRFT,Ur2)
e um2e n(ccz)wr IRFT' X IRFT

Cle1.0
) CﬁLL HﬁDDl(IRFT IRFT FT,un2,uny, Ci)
C umte FALL IRFT X IRF
IF (ICBM.NE. ICBT)THEN
URITE(KOUT,2) 1CBN=’, ICB®,’ ICBTe/,ICBT
URITE(KOJT, %) ’BT AND BM ARE NOT THE SAME SIZE- VILL CAUSE ERRORS®
EN

D IF
CALL NATI(BT,CCX, IRFT,ICRT, IRFY, UN2)
C unesFai2 IRFT XIRFN
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IFORMs 1
’ S
ALL AUGMAT(UMP,UM2,UMR, IFORM, IRFT, IRF
¢ ”‘“'c‘if’éarf?éﬁ’ IRFT x iérr‘xn- TRFT, IRFT. IRFM)
A 2,47, IREN, IRHT, IRFN,
¢ unie FAZy  IRFM IRFT IRFR, UML)
N ﬁUGHﬂT(Uﬂl FC. UﬂB IFORM, IRFN, IRF R
- C UMBe (FA21 FA22) IRFM X IRFM4IRFY 1RFT, IRER, IRFR)
| NDIN2-NSAUS
IFORMe2
IRFA- IRFT+IRFNR
écia-lﬁrn
ALL AUGNAT(UMA,UME,FA, IFORM, IRFT, IRFA, IRFN, ICFA
G N
0,K?
 ra SRR IO 7A,10,KIN, KOUT, NSAUI, NSAU3)

CIZIFORM BA - - - FOR REGULATOR CASE , NOT REGUIRED v+@
CALL MAT1(BT,GCY, IRFT, J1CBT. IRV UML)
¢ wMie BT(GCY) IRFT X IRY
IFORM=2
NDIM2+NSAUY
CALL-AUGMATL UMY , BCY, BR, [FORM, !RFT IRY, IRFN, IRY)
AT S
R, IRFR, KIN,KOUT, NSAU3, NSAY
C BA IRFA X ' SAU3, NSAU3)
catl aucnar(Uﬂz.tcv BA, IFORK, IRFT, IRV, IRFM, IRY)
MSGs‘ THE AUGMENTED B MATRIX BA
cALL nnaTJO(BA IRFR, IRY, xo.:xn,xou1 NSAU3, NSAVA)
C BA IRFA X IRY

Ty

-=un

c N
gxt!FORH GA

C GAe GT BT(CC2)
¢ S BCZ
CALL PAT1(BT,GCZ, IRFT, 1CB, IRKT, wn)
9 ¢ umis BT(GCZ) IRFT X IRW -
IFORMs 1

~ CALL AUSRAT(GT, UM1, UMS,IFORM, IRFT, IRQ, IRFT, IRNT)

C RECALL IRQ*ICGT FOR CONTINUQUS SYS,=IRFT FOR §-D SYS
C Wnls (6T  BTIGCZ)) IRFT X [IRKT<IRQ

D0 30€1 JR=1,1RFN

DO 3881 IC-t,IRG
3e21  UNMI(IR,IC)=e

CALL AUGHﬁT(U!Z,BCZ WD, IFORM, IRFM, IRQ, IRFM, IRHT)
C wMD=(¢ BC2). IRFE X IRG+IRHT

1CGA~IRQ+IRNT .

- IFORMe«2 SAV3 .

NDIMcE *NSAU

call AUGEQT(UHE $2g Gg g:g:;xlgFT I%GQ IRFM,ICGR)

PrSGe’ THE AUGMEN

¢ALL MMATIO(GR, IRFA, ICGA,10,KIN, KOUT NSAU3,NSAVI)
€ Ga IRFA X 1CGA

¢
¢ GUASGCZ(MT)  GCX)
NDIMeNSAUL
NDIMLaNSAUL+1
CAil MAT1(GEZ HT, ICBY, IRWT, IRFT, UK2)
¢ umae GCZ(MT)  ICBY X IRFT
IFORNe1
e NDIMS=NSAUL
. NZIr3eHSAUI
CALL RUGMAT(UM2, GCX, GUA xro«n xc:7 IRFT, ICBN, IRF)
. MSGe ‘THE AUGRENTED MaTRIx
- CALL MMATIOCGUR, ICLT, IRFA, xo,:xn,xoat.nsaua,nsaaaa
5 ¢ GUA ICET X IRFR
CrISTLZAUGMENTED SYSTEM MATRICES NOU AVAILBLE FOR COMPUTATION
¢

KDIMeNSAVY

NDINY eNGAVR
MDIM2eNSAU3
NDIN3eNSAV4

END
TDECK PERFAL
’ DE sﬁanourms PERFAL (IRY, IFLGCZ,MXA,GCY,GUR,PXA,PXVA, IFLGSD,
‘ 1 RR,GCZA, YD, EAT, INTGA, UME, URF , BLU, LA1, rOOUT | NXTOUT, PUOU% , PXTOUT,
N 1 MXARIN, AXARAX, PXTPIN, PXTRAX, AR IN, RINAX, PURIN, PURAX, KU, INTEA,
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1 UU3, UV
CHARACTER nggxagxr) AT
xpz?hnggéfngxné).zérén(nn§:gannxna).una(nntna,nnxna).unr(unxna,
RV (NDINMZ),UV4(RD

INDIR ) (RDINZ), PXACNDIN2, NDIRS ), PXUACNDINE, .

3 ROIA2D.MOOUT (NDIR),AXTOUT (DI ), PXTOUT(NDIN 1, PUGUTINDINS,
1 vncnnxnay.nxanxntuntnx.nxanax«nnzn:.nunznrnpxn:,nunaxxnp .
b FRTRIN(NDIN,PXTRAX(NDIM ), PUMININDIA) PUNAX(NDIR ), GC2A

1 NDIne,NDIR2),RA(NDIM2,NDINZ),GUACNDIR2, NDIR2),CCY (NDIR,

1 NDIM), INTBA(NDIMZ,NDIM2)

INTEGER IFLGCZ

DIMENSION CORI(1),COM2(1)

REAL MUCNDIM),PUU(NDIAZ,RDIN2)

COFMON /RNTIM RNTIFE,DELTIN

COPMON /na§u3/ggéga,nnxn3

OVMON /MAINS/

COFRON 7MAINL/NDIR,NDIMY,COM)

COMMON # INOU/ ﬁgz.xouw,tpuncn

gg::%ﬁ ﬁ::?ﬁgj xcst.xcnn.xcra.xccn.xccn,xccr.xcon,xnra,xarn,xnrt,
1 IRWT,IROGA,10,LGG, IRHM, NUNDTS

NSAUL«NDIM

NSAUI#NDIN2
NSAU4-NDIM3

¢
CXIXIPERFORNANCE ANALYSIS ROUTINE
THIS IS R CONTINUCUS TIME MEASUREMENT PERFORMANCE ANALYSIS
ROUTINE FOR EVALUARTIRG CONTINUOUS TIME CONTROL SYSTERS LRIVEN BV
UHITE GAUSSIAN NOISE. 1T COMPUTES THE MEAN AND COVARIANCE OF TWE
OF THE TRUTH MODEL STATES ,THE CONTROLLER STATES,AND THE CONTROLS
GENERATED. A SET OF AUGMENTED MATRICES 18 USED 70 DO THE
CALCULATIONS ===V (XT USTARIT, XAe (XT XM)T .. THE PERFORMANCE
ANALYSIS ROUTINE 1S DEVELOPED IN A MASTERS THESES FOR AIR FORCE
égg;é;U;ESgENTECHNOLOGY BY ERIC LLOYD, TITLE ‘ROBUST CONTROL

DOOODOOHONHOD

z2ThXA,PXA CALCULATION--~ THE MEAN AND COVARIANCE OF THE XA VECTOR
- FOUND USING SOLUTION FORNMS OF THE PROPAGATION EQUARTONS
KLIENMAN ROUTINES ARE USED TO PROVIDE THE SOLUTIONS
IN TRE FOLLOWING TUO EQS, THE FIRST OCCURRANCE OF PXA OR PXA
IS THE VALUE AT TIME T4DELTIM, THE SECOND ----AT TIFRE T
PXA=EAT (PXA)EATT+INTGA
MXA<ERT(NXA I+ INTBA
SEE DEFINITIONS BELOW FOR EAT ,INTGA, INTBA

NOTE SINCE TH1S PROGRAM CONSIDERS.ONLY TME REGULATOR CRSE,
Y- THE DESIRED INPUT- 1S ASSUNE]Q = 2ERD

AXADs (E(X0) &)T «(X0 eIT E*THE EXPECTED VALUE OPERATOR
PXRO» PO @
[

EATe EXP(FAITINAE)
INTBa= INTEG(EAT)BA FOR CONTINUDUS TIME SYSTENS
> BAD FOR LISCRETE SYSTERMS
INTGas INT(EAT(GAICA(GATIEATT) FOR CONT TINME SVSTEMS
=  GDR(QDA)IGDAT FOR DISCRETE TIME SYSTENS

ABOOOOOOOD0OON0O0 0O000

LCOUNT=0

IRNeNINT(RNTIME/DELTIM)

GRITE(KOUT,R)’ENTER R € IF YOU WANT NG PRINTS OF Pxa, PUU, MXA,
1 AND MY RATRICES DURING THE PERFORMANCE AMALYSIS, ELSE ENTER THE
1 NUMBER OF TINE INCREMENTS DETUEEN PRINTS( THERE ARE ‘,IRN,’ TOTAL
{ TIME INCREMENTS IN THIS RUNIY'

READ(KIN,3)IIPCNTL

1f (IPCNTL.EQ.@) THEN

100
ELSE

106

END IF -
DO 5003 INei,NSAVL

PUUCIN, IN)eD
RUCIN)=@
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29 v

KXANINCIN) =@
MAAMAX(IN 1@
PXTRINCIN)»0@
PXTNAX{IN)*0
RUMINCIN) 0@
NUMAX (TN ) =@
PUMAX(IN)e®
PURINCIN) @
5003 52?7énus
TE(KOUT,Z)’ENTER THE NUMBER OF SAMPLE FERIODS DESIRED BETWEEN
1 PLOT POINTS(MAX 1000 PLOT POINTS) THMERE ARE *,IRN,* SAWPLE PERIOD
15 REQUESTED FOR THIS RUND*
READ(KIN,3)IFLTPS
DELPLT-DELTIREIPLTPS
DG S60e ITLRPei,IRN

IF(10.EG.5) THEN

JJ=ITLNP-1

IPNT=NOD(JJ, IPCNTL)

IFCCIPNT.EQ.@).OR.(ITLMP . EQ.IRN) T THEN

TIPE=JJXDELTIN

URITE(KQUT,3)’TIrEs ’,TINE

MSGe’ o PXA‘-

ggéL'ﬂﬂthgépfh,IRFﬁ.IRFﬂ.XO,K!N.KOUT,NShU3,NShU3)

ggkl.:::TIO(PUU.!CBH.ICBH.IO.KIN.KOUT,NSQUS.NShU3)
. .

CALL MUECIOIMXA,IRFA,10,KIN,KOUT,NSAVI)

RSGe 'Ry’

CALL NUECIO(MU, ICBM,10,KIN,KOUT,NSAVL)

END IF

END IF
c NOW WANT TO STORE FOR PLOTTING, MXT,PXX,MU,PUU
DO 1&3 IUR-1,IRFT : .
AXTOUT(JUR)IeMXA(IUR)
PXTOUT(JUR ) ePXA(IUR, IWR)
NXORMIN{ IUR I eMIN(PXARINC(IUR), MXA(TUR) ) -
MXAMAX { JUR Yo MAX (MXAMAX (JUR ), MXACIUR))
PXTMAX( TUR ) s MAX (PXTARX( JUR }, PXARLTWR, IUR)) -~
123 PXTMINGIUR Yo MIN(PXTMINCIWR ), PXACIWR, JURY)
PO~ 124 IVR-3,ICBN
MJIOUT(JUR I=MUCIUR S
PUOUT ( TWR ) »FUJ(TUR, IUR)
MM INCIUR ) »MIN(MURINCIUR), PUCTUR))
MUMAX C TUR ) s MAX (MUMAX (TUR D, MUCIUR))
PUTAX ( IUR ) sPAX (PUMAX ( TUR ), PUUCTUR, TWR D)
124 PUMINCIWR)RINCPURINCIUR),PUUCIUR, IUR))
CEIXXIILX :
Crzzzz NO CROSS CORRELATION TERMS ARE PLOTTED
c

NDINE=NSAVL
IPTCTLMOD(JSJ, IPLIPS)
IF (IPTCTL.EQ.8) THEN
cALL STORED(1LQG,RNTINE,DELPLT,LCOUNT, IRFT,IRFT, ICBM, 1CBN,
{1 PXTOUT,PXTOUT,MUOUT,PUOUT,NDINE)
Eﬁguq}-LCOuﬂTOl
C NOTE THAT YD IS RESTRICTED BY VALUE OF LCOUNT TG BE COMSTANT
€ BETUWEEN PLOT POINTS
IF (LCOUNT.CT. 1000 )THEN
C RESET LCOUNT
LgOUHI-lODO

END 1
gtx!UPDaTE PXA, PXA

NDIMeNSAUI
NDIMIeNSAU3 ]
g?L% :ATQ(IRF&,!RFA.EGT,PXR.UHE)
14 .
. CALL MADDI(IRFR,IRFR,UME, INTGA,PXR,CL)
Crxzexp AT NEW TIME NOW RVRILAELE
C Fxas ERAT(MXAG)I+INTEG(EAT(BR) (YD)
- DO 1814 IKe=1,IRFA
1814 W3(IK)e@
DO 1815 IKe=!{,IRFA
DO 1815 lJ°i,IRFA
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1£15  UVICIK)I=QUI(IKI+EAT(IK, IJISMXA(T)
PO 1812 IMR=1,IRFA
$1E12 UWV4(IMR)=INTBACIMR,1)XYD(LCOUNT)
PO 1813 1J=1,IRFA
1E13  MXA(IS)I=WUS(IJI+WV4(T])
Cx3IMXA AT NEW TIME NOU AVAILABLE
CzssmU, PUY CALCULATION FOR ZERQ MEAN MEASUREFENT NOISE
C  MU-GUA(MXAI+GC2(MUT )+GCY(YD).. .. MUT ,THE MERN OF NOISE V ASSUMED +e
X1sYD(LCOUNT)
NDINMsNSaUL
NCIN1=NSAV1+4
CALL SCALE(uM1,GCY,ICBR,IRY,X1)
C uni= GZY(YD cen X
NDIR*NSAU3
NDIMi=NSAU3+1
DO 1817 IJ=1,ICBM
1817 WU3(1J)=0
PO 1816 1J-1,ICBM
DO 1816 IK=L,IRFA
1816 WV3(IJ)=WVU3(1JI+GUACII, IKIXPXACIK)
C WU3=GUA(MXA) ICBR X &
€ ALDED TO UNM! ABOVE TO GET MU
DO 329 1-1,1CBA
328 MUCIDeWu3(])eeni(L, 1)
c IRFA X § " ====NOU AVAILABLE=r=o==
glttPUU CALCULﬁTION&gg?;222§$XA)GUGT+GU&(PXU&)GCZT¢GCZ(PXUA)GUQT¢
CALL MATICICEM, IRFA,GUA,PXA,PUU)
C PUUSCUA(PXAIGUAT ICBR X% 1CBM

1

C2TITIXXIFLGC22E222
¢ 1F (1FLOC2.EQ. 82 ThED NOT EQUAL To ZER
e resrerFLocarrsses 0 ZERO CALCULATE OTHER TERMS OF PUU

. IF (IFLGSD.EQ.®) THEN
€ DONT DO THIS FOR $-D CASE
CALL MATSIGUA, PXUA, ICBN, IRFA, IRMT, UPE )
gALL MAT4(URF, GC2A, ICBN, TRKT, TCBA] URE)
CALL MADD1 (ICBM, ICBM,PUU, URE, UMF,C1)

C LMFeQUAR(PXA JIGUAT+GUA(PXURIGCZT

CALL MAT4(GCZA,PXVUA, ICBNM, IRKT, IRFA,PUY)
CALL MAT4(PUU,GUA, ICBN, IRFA, ICBM,UNE)
CALL MADDI(ICBM, ICBM,UWNME,UrF,PUU,C1)
C PUJGUA(PXAIGUAT+GURIPXURICCZT+GCZ (PUXA IGUAT
END IF
CALL PMAT3(ICBM, IRHT,GCZA,RA,WNE) .
CALL MADDI(ICB®, ICBN,UME,PUU,UMF,CL)
CALL EQUATE(PUU,WMF, ICBN, ICBM) *

END IF
gxxx PUJ NOW AVAILABLE ICBM X ICBM

¢
siee  CONTIMUE
Cell STORED(LOG,RNTIME,DELTIN,LCOUNT, IRFT,IRFT, ICER, ICEF,
1 PXTOUT,.PXTOUT, MUOUT,PLOUT,NDINE
' STORE MIN VALUE AND SCALE FACTOR IN 2 LOCATIONS FOLLOWINS
DATA VALUZS --FOR USE IN PLOT ROUTINE .
NOTE THAT 3.5 INCHES IS CHOSEN HERE AS THE AXIS LENGTK
CALL STORED(LOG,RNTIME,DELTIF,LCOUNT, IRFT,IRFT, ICBN, ICBN,
1 EXARIN,PXTRIN, MUMIN,PURIN,NDING)
po 125 1URe1,1RFT

[ X4X 9l

PXTOUT CIUR )« (RXAMAX ( JUR ) =RXARINCIUR ) )43.5
1g¢ FXTOUT (IUR ) o (PXTRAX( JUR )=PXTRINCIUR) I/3.5

DO 126 IuRe=t,ICEN

PUOUT ( TUR )« (MURAX( JUR ) =RUMIN(IUR ) )/3.8

PUOUT (IWR )» (PUMAX ( JUR)-PURIN(INR))/3.8
126 ST SORBTRC R ECTIR Lequn fner, . cam, s,
RXTOUT, _
! p cALt $0 €TORED WITH LCOUNT ¢ ¢ INDICATE THIS DATA RUN COMPLLTE
COUNT =3 v
S OUN L FORED (LG, RNTIME, DELTIM, LEQUNT, IRFT, IRFT, ICON, 1C3N,
1 "RxTOUT,PxTOUt, MUOUT, PUOUT, NDING)
NDIMeNSAVL
NDIMS oNSEUR
NDIM2=NSAVI
NDIR3eNSAV4
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€ RESET 10 TO SOME NONZERO VUALUE TO AVOID TERMINATING THE PRCGRAP
¢ Uﬂgg gETURNING TC MAIN ROUTINE, LOGRP

END
$LECK MYPLOT
gugROUT!NE.HYPLOT

SDECK AUGCNHAT
SUERCUTINE RAUSMAT(RL,AZ,A3, IFCRM, IRAL, ICAL, IRAZ, ICAL)

4 .
CrrEFINDINZ,NDINS MUST BE SET IN THEM CALLING PROGRAM BEFORE USING
CYTITINDIMES,NDIMI MUST BE SET 1IN THE CALLING PRCGRAM PEFCRE USING
(38244 THIS SUBRCUTINE. = THEY MUST BE DECLARED IN A COMNON BLOCK

LABELED ~~MAIN4=~--
THIS SUBROUTINZ FORHS AUGMENTED HRTRICES OF THE FORM
IFORN=1 A3=(AL AQ)
IFORH-E A3=(R] A2)T

OOOOOO0

IRAL, IRAZ,ARE ROY DIMENSIONS, ICA1, ICA2,ARE COLUMN DIMENSIONS
DIHENSION AL (NDIR2,NDINR), AE(NDIHE WDIM2),A3(NDINI,RDINI)
COmMON /PAIN4A/NDI®D _NDIR3
IF¥ (IFORM.EQ.1) IHENM
¢ FORM THE AUGMENTED MATRIX A3e=(Al AR2)

DO 1 [I-g, IRRI

Do 1 III-! I1CA
11 R3(11, !11)-&1(1! 11D

- DO 12 IVey,ICAR

UL« JU+ICAL

ic A3(11], IUI)-AEIXX )
RETUR

END l
C FORR AUGMENTED MATRIX R3I*(A! A2)T
[RAJ«IRAL+1RAR2

13 AB(III.II)-ﬁt(IXI 11)

DO 14 Iusi,IRAR
1VUI-Iu+IRAL

14 A3(IV1,11)+A2(1V,1I1)
RETURN

END
$DECK RUECIO
SUBROUTINE MUECIO(A,NUMEL,TI0,KIN,KOUT NDIM)

THIS SUBROJTINE REALS PRINTS ENTIRE (PORT;ONS 0F ) TME VECTOR
R, DEPENDING ON THE URLUE OF ~=-10---, O3 ~--RERAD ONLY
1Qe2~-~READ AND PRINT, 16+3 REARD SELECTED VALUE, 10+«
P:SDSQNDnglﬂT SfLECTED VALUES .
TO USE 10+3 OR 4« THE CASLLING PROGRam NMUST INITIAL ZE THE VEC.
IXITIZTHIS ROUTINE SETS ]0=@~--- WHEN NO DATA IN INPUT FILE

CRERD 16 FROM UNIT SPECIFIED BY CALLING PROGRAM IN KIN,URITE 15 TO
€ KCUT.NDIM 1§ THE DECLARED DINENSION OF A IN THE CALLING
c FROUGRAM

CHARACTER MSC260

DIMENSION ﬂ(NDlH)

COMMON /MAUNS/ A

IF ((I10.EQ.1), OR (10 £6.2)) THEN

C READ ENTIRE VECTOR
NJPEL.‘ELEHENTS)'

OOCriInrH

URITE(KOUT,X) ‘ENTER *
READ(KIN, 2, ENDe2S ) (ALY, 1o 1, NUMEL)

END IF
IF (10.EQ.1) THEN
RETURN

END IF
.EG.3).0R.(10.,EQ.4)) THE
¢ thg Déae SELECTED ELEMENTS, TME FIRST NU:%E! ON EACH CARD
C 1S THE SURSCRI’T.OIEED§$EOS£*é3 ;EE D:Tg ENT
g::::::::Ng;ESY CARD MUST CONTAIN THE TCTAL WUNBERR OF ENTRIES TO BE

¢ RER?TE(KOU?&‘)'ENTER THE NUMBER OF ENTRIES TO BE RADE>’
READ(KIN, :.Esg;59)ﬂuﬂt NT
3«:$2<§3u1.:) JENTER THE ELEMENT NUMBER ,THEN ITS VALUE>’
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REQD(KIN ! ND+29)1,EN
?éz’;g T +END*29)1,ENTRY
¢ 0 4 )THEN
WRITE (KOUT, 33?§ '
iR e
X)'ELEMENT NUMBER . ‘
gﬁ!#E(KOUT.ll)l.h(l) ENTRY>

2@ CONTINUE
RETURN
thd IF
IF ((10.EG.2).0R.(10.EQ.5:) THEN

¢ TO GET WERE 10s2 OR § SO PRINT OUT ENTIRE VECTOR

URITE(KOUT,33)’
VRITE(XOUT,x)NSG
VRITE(KOUT,x)* THE UECTOR RRS ‘ NUMEL, ' ELENENTS’
URITE(KQUT, 22 (RL1),I=1,NUREL)
RETURN
END IF
RETURN

25 PRINTZ,’END OF DAT REACHED DURINS INPUT TN MLECIO’
100

¢ SEXIXITHIS ROUTIHE SETS 10=0=~~-~ UHEN NO BATA IN INPUY Flib
33 FORMAT(A10,/)
11 FORMAT(I4,15X,E12.6)
22 FORMATC(10118(1X,E12.6),1,/))
re

END

TpECK 23:;301xn5 NMATIOA, IR L
T10¢ . KIN,

CHARACIER MocE é I1C,I0,KIN,KOUT,NDIN,NDINS )

DIMENSION ﬁ(NDIH NDIM1) .

COMMON /MAUNS/ ®SG °
THIS SUBkOUTINE RERDS AND/OR PRINTS THE MATRIX A DEPENDING ON THE
VALUE OF 10. 1T RERDS FROM UNIT SF. CIFIED BY XIN AND URITES TO UNIT

KOUT 10»3--READ ENIRE ARRAY I0+2=-~READ AND PRINT ENTIRE

¢

c

g

C  ARRay, 10=223---READ SELECTED ELENENTS OF A [0=4-=-READ AND -~
¢ PRINT SELECTED ELEMENTS OF 0+§ ===PRINT ENTIRE ARRRY

T  N§DIR,NDIM: RRE THE DIHENSIONS oF A IN THE CRLLING PROGRAM
<
C
c
¢
c
¢

SEITLINOTE IF 10" OR 4 THE CALLING PROGRAM MUST INITIALI2E
THE ENTIRE ARRAY BEFORE CALL
ZTXTLITTHIS ROUTINE SETS 10 @ ~--~ UMEN THE INPUT FILE IS EmPTY

IF ¢(10.EQ.1).0R.(I1D.EQ.2)) THEN
READ ENTIRE ARRAY IN FREE FORMAT,ROU MAJOR ORDER

WRITE(KOUT, 2 ) ENTER ’, (IRXIC)H, * aRRAY ELEMERTS IN ROW MAJ ORDER>*

EEAD(KIN SE,END283C(R(],D), J-l I1C),11,1R) -

ND 1 .
IF (IO EG.1) THEN
RETURN .
END IF
IF ((10.EQ.3).0R.(IC.EG.4)) THEN
READ IN SELECTED ELERENTS OF &
THE FIRST CARD IN THE INPUT STREAM NUST CONTAIN THE TOT&L
NUMBER OF ELEMENTS TO BE READ IN. ONLY ONE ENTRY PER CAR
THME FIRST ITEM ON EACK CARD 1§ THE ROW, THESECOND 15 TNE coL THE
LAST OKR ERCH CARD IS THE DATA FOR THAY LOCATION
FREE FORMAT IS USED
VRITE(KOUT,2) ‘ENTER THE NUNBER OF ENTRIES TO BE MADI>*
READ(KIN,2,ENDe29 INUNREL
DO 28 1%, ,NumEL
\RXTE(KOUT 2)ENTER THE ROU,AND COLUMN FOLLOWED BY ITS valuD) !
READ(K!N. END *28111.,J,ENTRY

OO

L4
WRITE (KOUT,X)IMSG
URTTE;KOUT S M AN0 S PPN PRSI TSR PR

END T
26 CONTINUE

E
1F ((IC £0.2),0R. (10.£0.5)) THEN
C 10 « & OR § I¥ HIRE SO PRINT ENTIRE ARRAY
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URITE(KOUT,33)
URITE(XOUT, 2 IMSG
URITE(KOUT, )’ MATRIX SIZE 15 “,IR,’ X ‘,I1C
DC 49 1e§,1R
49 USITE(KOUT,48)(A(1,d),J.1,10)
33 FCRMAT(R10,/)
43 FOPuaTTS(iO(lX €12.6),:,7))
END ]
TV ?‘4
29 PRIN: 2, ’END OF DRTR REACKIL DUGING INPUT
€ ITITXTITHIS ROUTINE SETS 10 sv -~-- YNIN THE INPUT FILE 1S ENOTY

10-@
RETURN
END
IDECK CLAGRS
SUBROUTINE CLOGRS(GCSTR,FN,BM, RKFSS,HM,GCX,GCY,GL2,
1BCY,BC2,FC,YD,RM, QM FT,BT,CT,QT,RT,HT, IRY, IFLGCZ, UMl
1 ,6M2,UN3,PO,GR, UR4,UNS5,UNE,
1 Wi, wie, UUU UXX, XO UXU UM?,uns)
C THIS ROUTINE PERFORMS SET UP FOR USING THE CONTINUOUS TIME
C PERFORMANCE ANALYSIS FOR ANLOG REGULATOR
DIMENSIONGCSTRINDIN,NDIM),FRINDIF, NDIM),BMINDIM,NDIN),POCHDIN,
AINDIM), W™ (NDIM, NDIM),GCX(RDIN,NDIM), GCY(NDIN,NDIR),GCZ(NDI®,RLIR),
!BCY(NDIH NDIR), BCZ(NDIH RDIN), FC(NDIH NDIR), YD(NDIP3) UHX(ND L
INDIN),UR3(NDIM,KDIP), UHB(NBIE.N.XH).FT(NDIH NDIM),
1 BT(HDIH KON, GT(NDIH NDIM),KT(NDIF,NDIM), RH(NBIR NI,
1GTINDIN, HDIﬂ) RT(NDIH NDIH) OH(NDIH,NDIH) UUl(hDIH) UJ;(NDIH
1), XO(NDIH) GF(NDIH.NDIH) VUJU{NDIM,NDIN),
L UXX(NDIN, KDIM), WR4(NDIM,NDIM), UHS(NDIH NDIM
1 UHSIND!H.NDIH) UXU(NDIM,NDIPF), UHT(ND!H NDIH) UPS(NDXH,NS'H)
DINENSION COPI(!) coma(s)
. CHARACTER MSGx6@
INTEGER IFLGCZ . .
REAL RKFSS(NDBIM,NDIM)
COMMON /MAIN4/NDIM2,NDIN3
COMMON /MAUNS, RSG
COMMON /MAINL/ NDINM, NDIHI comy
COMNON /MAIN2/ COM -
COMMON /RNTIH/RN'IRE DELTIM
COMMON /INQU/ KIN.KOUT,KPUNCH
COHHON /BAINE/ICBT, ICEN, ICFA, ICGA,ICGM, ICGT, ICCR, IRFA, IRFR, IRFT,
IRHT, IRG4, 10,LGG, IRHY, NJ-DT
UhITE(KOUT x)°D0_YOU WANT 70O CALCULATE EIG‘NUALU:S OF THE TRUTH Rm3
iDEL AND CONTROLLER MODEL F MATRICES, VY OR
READ(KIN,23,END-2933) MSC
e3 FORMAT (A1)
IF (MSG.EQ. 'Y’) THEN
URITE(KOUT,3 )’ *
URITE(KOUT, % )’THE EIGENVALUES OF THE TRUTH HODE‘ F NATRIX’
CALL MEICN(FT,Uvl, bu2, JRFT,UM1)
WRITE(KOUT,2) THE EIGENUALUES OF THE CONT. MODEL F MATRIX’
EGBLIPEIGN(FH LUU1,WUR, IRFN,UNL)
N
CALL CKFTR(FM,GM,RM,HM, NUMDTS ,RKFSS,GM, UNL,UNZ, UK, UN4,URS,UNE,
1 IRFR, IRHH.ICGH GCY GCZ, BN, 1¢BM) My ARRAYS FOR M2 .
¥, IN CALL TO CKFTR ARE USED RS DU
¢ GCchEL CDTCON(FH.BR.UXX WUU,GCSTR, IRFM, ICBM, UMY , U2, UN3, UH4 UHS une,
%U, UK?7, URE) s
1U:I$E?KOUT £)ENTER THE TOTAL RUN TIME AND THE TIME INCREMENT)
READ(KIN,2,END=2933)RNTIME, DELTIN
jo-i
caLl IDNTC(IRFR,uUx1,C1?

VPie= IRFN X IRFM
¢ ! ILL HGTI(CCSTR WML, ICBNK, IRFR, IRFN,GCX)

106
mSSeGCX FOLLOWS, GCY,GCZ SETe@’ -
cAll MMATIO(GCX, IClH,IRFH 10,KIN,KOUT,NDIP,NCIR)
§,662,AND GCY SHOULD BE CALCULRTED IN
¢ NOTEXIRXEX OTHER GSXN ;Szglgga USE IN THE PERFORMANCE ANALYSIS ROUTINE.
po 2peée 111'1 icen
DO 29ce TTIge1, LRHN
gsee G“Z(III IIII)'!

¢ IF{EEZ'i INDICATES GC2 1§ SET TO 2ERO--PREF ANALYSIS ROUTINE USES IF
c

DO 2903 1-1,1000
2903 vYDtl)ee
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1723
¢ FORN

1782
c YD
C FO

¢ FO

IRy}

DO 1723 I-31,1CBM

DO 1723 Jry,IRY

GCY(I J)-O

DO 1702 » IRFM

DO 1702 J IRY

BCv(1, J)-O

IS RLLOUED TO ONLY BE A SCALAR AT THIS TIME
C! l 0 -

CALL EQUATE(BCZ,RXFSS, IRFM, IRHN)
MSGe=BCZ FOLLOUS, BCYs@’
C:LLCHHATIO(SCZ IRFﬂ IRMM, IG,KIN,KOUT,NDIM, NDIM)
AL TR e o
ML, un )
URITE(KOUT, 3>’ - g.c1
VRITE(KOUT.2)°DO YOU WANT TO C&LCULﬂTE ?NE EIGENVALUES OF THE CONT

1INUOUS-TINE LG CONTROLLER? Y

READ(KIN,23)M5C
_IF (nsG. EO.‘Y') THEN

(KOUT, %1 °THE EIGENUALUES THAT CORRESPOND T0 THE POLES oF

WRITE
$ THE CONTINUGUS-TIME LG CONTRGLLER ARE.,.’

CELL H'!CN(UHE WV1,Wu2, IRFN,Unt)
Cle~t
Cﬁbkx?gIEéRKFSS'HH.IRFH » IRHM, IRFM,UNL)

URITE(KOUT,2)°D0 YOU WANT TO CALCULﬁ?E THE POLES OF THE CONTIMU
10US-TIRE KALMAN FILTER? ¥ OR

READ(KIN,23)MSC

IF(MSG.EG. *¥’) THEN

CALL HADDllIRFH IRFN,FM,UML,0N7,C4

URITE(KOUT, %)’ THE EIGENURLUES THAT GRE THE POLES OF THE CNOTINU
10US~-TINE KALMAN FILTER ARE....°

CALL HEIGN(UH7 LWV, WVE, IRFH,UNE)

END 1
call MADDLCIRFM, IRFM, UM, URL,FC,C1)
MsGe’ FC FOR THE LGG CONTORLLER 1§°
CALL MMATIO(FC, IRFM,IRFM,I0,KIN,KOUT,NDIM,NDIN)
URITE(KOUT,x)’ ~
URITE(XOUT,2)’DO YOU UISH TO CSLCULQTE THE EIGENVALUES OF THE LGS -

1CONTROLLER F MATRIX? ¥

2833
tDECK

READ(KIN,23)M56

IF (MSG.EG.’Y’) THEN

WRITE(KOUT,3)’

WRITE(KOUT, 2 )’ THE EIGENVALLUES 0‘ THE LOC CONTROLLER F MATRIX ARE’
CALL MEIGN(FC,W1,Wu2, IRFN,UR}

END IF

RETURN

E

DASY

SUBROUTINE DAS1(GAST,BM,V,ICBR, UM3, IRFA)
DIMENSION GQGT(NDIM,NDINW), SR(NDIH NDIN),V(NDIM,NDIN),
1  UM3(NDIFM,NDIN),COM1(1), corati)

THIS SUBROUTINE RODIFIES GGGT AND RETURNS THE MODIFIED

VALUE IN GOGT, WHERE GGCT IS USED IN THE KALMAN FILTER
GAIN CARLCULATIONS, THE MODS ARE IN ACCORDANCE WITH THE
THE TECHNIQUE DEVELOPED BY DOYLE AND STEIN IM SROBUSTNESS

VITH OBSERVERS®,IEEE TRANS. ON AUTO. CONTROL,VOIL ACR24,
NO. 4,AUG, 79,PGS 807-611%.

THE UALUE RETURNED IN GOGT 1S GQ ., WHERE 0G IS

G 15 A SCALAR DESIGN PARAMETER, THAT RS 17 APPROACHES
INFINITY, CARUSES THE LGG CONTRSLLER TO RECOVER THE ROBUSTNESS

THE

PROPERTIES OF & FULL STRTE FEEDBACK CONTRCLLER.
MATROX=-=U== 1S RL50 A DESIGN, PARAMETER VITHW THE REQUIREFENT

THRT 1T BE POSITIVE DEFINITE. BR=~== 1§ THE CONTROLLER FODEL INPUT

MATRIX. GGGT --- 1§ THE C CONTROLLER MODEL INPUT NCISE STRENGTH
MATRIX QH* PREFULTIPIED BY GM AND POST MUTIPLIED Bv GNT WHERE G% IS

THE INPY

%
¢
C
[
¢
c
¢
E GG=GOGT+SA(SCIBMIVIRNT)
¢
¢
¢
C
¢
¢
c

NOIESE MATRIX.

CHARACTER MSGxE@

COMMON sMAINL/NDIN, NDIML,CON

COMNMON /MAINZ/ COMe

COMMON ~ INOU/ KIN.KOUT,KPUNCN

COMNON /MAUNS, M

WRITE(XOUT,11)’ '

WRITE(KQUT,X)‘THIS ROUTINE NMCDIFIES THE UaLUE OF G'{OF onT

t USED 1IN CA.CU ATING THE KﬁLHhN FILTER GRIN, RKFSS
URITE(KOUT.2)’THE MODIFIED G IS » GH(OH)GPTQSOXSO(IH)U(lf?)UHERE
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™

P DESIGN PARAMETER.AND U 15 A& POSITIVE DEFINITE
TN gaggghﬂpaggnstsn. TNZ LARGER SG, THE MORE ROBUST THEI CONTRO
L SYSTER UILL BE.°
DO 5 INPs:, 1000
URITE(KOUT, 1) *
11 FORMAT(AlE,/)
WRITE(KOUT,S}/ENTER 1-TO INPUT SQ, 2-TO INPUT U 3- TOCALCULATE MOD
tIFIED 00, %- TO EXIT THIS ROUTINE)®
READ(KIN,2)ISEL
GO T0 1,2,3,4)1SEL
1 URITE(KOUT,11)¢ *
WRITE (KOUT,T)’ENTER SQy@-=>’
READ(KIN,2)SQ
GO T0 S
URITEC(KOUT,11)* *
(o SRITE (KOUT,23°V IS INIALIZED TO .ZERO UPON ENTRY INTO THIS OPTIO

DO ? 1e3,NDIR
DO 7 J=1,NDIN

L4}

? U(1,J)e0
xg§§TE(K°UT,!)'ENTER I/0 ORTION FOR POSITIVE DEF VISEE INPUT ROUTIN
READ(KIN, 2310
nsGe ‘DESEGN PARAMETER U MATRIX ENTRIES’

CALL MMATIO®V,ICBN; ICBM, I0,KIN,KOUT,NDIN,NDIM)
3 CALL MATICIRFR, IRFM, BN, U,UrI)
C  UN3=BMIVIBNT IRFM X IRFM
S$G1+50xS¢Q
CAaLl MADDY(IRFRK, IRFN,GA8T, VM3, V,S804)
C UV IRFM X IRFF NOW CONTAINS THE MOD. VALUE ~--QQ
MSGe‘THZ DOYLE AND STEIN MCDIFED QQ PMRTRIX IS’

105
CALL MMATIO(U, IRFF, IRFM, 10,KIN,KOUT,NDIN,KDIM)
S CONTINUE
g °°CONTINU’E . .
15_ACCEPTABLE SO PUT INTO GOST
DO 2@ 1vi,IRFR
DO 2@ Jsi,IRFM
ce GQST(I,J)=u(1,))
RETURN

END
TDECK MYINTG
I?ggzgg?IHE HYINTG(PHI.INTGQ,IWTBQ,UHE,GR,OQ,FG,BA.IRFQ,ICGQ,IRV.
THIS SUBROUTINE SETS UP THE NICESSARY INTEGRALS FOR USE By

"EXP(FAITINE)*EAT, INTEG(EAT(GA, QA (GAT) EATT
éNTEC(EQT (BR)I.' UME 1S @ DUMMy woRre space ) AP
1 ORE (HD IS NDIRE 3 9at Kenng AT, JDIR2 ). INTBACND N2, NDTnz),
1GA(NDIR2, NDIRE), FACNDIP2, RbIRE) * o F (DIN2,NDIK2),
DIMENSION COMI(1),COM2(L) ;
COMMON/MAINL /NDIM, NDIRT, COMY )
COMMON/MAINZ, COMS

COMEON /INOU/ KIN,KOUT,KPUNCK

COMMON /RNTIM/RNTIME, DELTIN

___. COMMON /MAIN4/NDIN2,NDINZ

CETIFORM GA(QAIGAT --NEED'FOR KLIENMAN ROUTINE

NSAUL eNDIM
NSAU2eNDIMY
NDIMeNDIM2
sinioverer
( F
5 unz-guzéegt) R,FR,DELTIM, INTGA, WNE, 1€ )
ALL MATL(UNE,BR, IRFA, IRFA, IRY, INTRA)
C INTBAes INT(EARTIBA’ 1IRFA  XIRY' & NE
CALL NAT3(IRFA, IROA, R, On P CoCD IN MXA UPDATE
P INTEL  1RFARER bty [REA
R,FA,PHI, INT
C PHISEXP(FA)  IRFA 'X 'Ikgﬁ GA.DELTIM)
€ INTGAINTEGRAL ( EXP(FAMGRI(OA)(GATT)EXP(FRIT)) IRFA X IRFA

NDIMeNSAYL
KDIMieNSAYR
RETURN

END

OO0 00

THE PERFORMANCE ANAL. ROUTINE. THE STATE TRANSITION MATRIX,




IDECK DSCRTZ
SUEROUTINE DSCRTZ(uri,PRIN,BCYD,BC2D, IRFM,DELTIF, FC,BCY,
1 IRY,BC2, IRHM,PHIT,QTD,BTD,GT,QT,FT,BT,IRFT,ICGT, ICBT, IRHT,
IRTD,RT,CCX, ICEM)
THIS. ROUTINE DISCRTIZES A CONTINUOUS TIPE LGS CONTROLLER USING
FIRST ORDER APRROXIMATIONS TO THE REQUIREL INTEGRALS
AND PROVIDES &N EQUIVALENT DISCRETE TIMZ REPRESENTATION OF THE TRUTH
MODEL FOR USE IN THE PERFAL ROUTINE
REALUMI. (NDIFM, NDIN),PHIN (NDIM,NDIF),BCYD (NDIM,MDIM),
1 BCZD(NDIF,NDIM,FCINDINM,NDIM), BCY(NDIM,NDIR),
1 BC2(NDIK,NDIM),PHIT(NDIF,NDIN),GTD(NDIM, NDIN),
1 BYD(NDIM,NDIR),GT(NDIM,NDIF), CT(NDIN,NDIN),
1 FTCNDIM,NDIN), BT(NDIM,NDIN),RTD (NDIM,NDIM),
1 GCX(NDIF,NDIM),RT(NDIN NDIM)
RERL CON1(y),CORR(1)
CHARACTER MsCei
COMMON/NAING /NDIM,NDIML, CONL
COMMCN/NAINZ, COM2
COMMON/RAINA/NDINMZ,NDIRI
COMMON /INOU/KIN,KOUT,KPUNCH

Cil=§.0
CALL IDNT(IRFRM,UM1,CL)
CALL IDNT(IRFM,UM3,C!)
CALL MADDi(IRFK, IRFM,UN1,FC,PHIM, DELTIM)
C PHIM<I+FC(DELTIN) IST ORDER APPROX TO STATE TRANS MATRIX OF CONT
c CﬁLCU%?TEiGg* *-GCSTR
C RECALL THAT GCSTR LAS PASSED INTO THIS ROUTINE IN BTD
g?L% gCRLE(GCX.BTD.ICBH,IRFH,CI)
CALL SCALE(BCYD,BCY, IRFM, IRY,DELTIM)
BCYD DISCRETE TIRE RPPROX OF BCY )
CALL SCALE(BCZD,BC2, IRFM, IRHN, DELTIM)
BCZD DISCRETE TIFE APPROX OF BC2
NSAU3=NDINZ
NDIR2eNDIM ‘ .

CALL MYINTG(PHIT,QTD,BTD,UM1,CT,07,FT,BT,IRFT,1CCT, ICBT, IRHT)
NDINM2=NSAV3

C PHIT.OTD,BTD ARE EQUIV. DISCRETE TINE REPRESTATIONS OF TRUTH RODL
VRITE (KOUT, %)’ * -
WRITEC(KOUT,2)’ UAS THE VALUE ENTERED IN RT DURING INPUT A CONTINUO

1US TIME OR A DISCRETE TIME VALUE? ENTER A C FOR CONTINUOUS , R
1 D= FOR DISCRETE VALUE)’
READ(KIN, 12)MSG
12 FORMAT(AL)
IF (MSG.EQ.’C’) THEN
C1=1/DELTIN
CALL SCALE(RTD,RT, IRHT,IRHT,C1)

ELSE
g:%LIEOUA?E(RTD.RT,IRHT,IRHT) .
C RTD IS THE DISCRETE TIME APPROX OF RT :

Cie{.

CALL IDNTUIRFT,UR1,C1)
C uWi=GTD = 1

END

TDECK DLOGRS
RS(GEX,GCY, 6C2, BCY,BCZ, PHIT ,PHIC,RTD,CTD, 07D,
1sg¥;?g;§§§§gk?gn§an.uﬁécagg?agz.5:§R53?Tbsé§.uuu.ccsT&,&:rss,vn.
c'rnxsl éﬁ;ééﬁ#gﬁs'gggﬁg¢é'gus'sanéLso'baT& CONTROLLER INTO THE FORPAT
¢ "REGUIRED BY THE PERFORMANCE ANALYSIS ROUTINE e CODE. AN
C THE FORRAT 1§ SPECIFIED IN TWE COMMENT STATEMENTS IN ,
€ IN'MORE DETAIL I"cgﬁa%kgvb S MASTERS THES1S,DE1,AFIT,
>
REAL gg:§§3rﬁ.unzn),ccvcnozn.nnzn>‘cczrnn:ninnxn),
{BEY(NDI®,NDIN}, BCZ(NDIM,NDIR),PHI%(NDIN,NDIMR),
i anccnnxn,unxn),Rrp(nn1n,?:xngﬁﬁag§:négi:gxn).
M,NDIM),BTD(NDIN,NDIM) ,
10T D TR ). QR(NDIM,NDIM),GM(NDIN,NDIN),
U1 (NDIF3, UWU2(NDIM)
BR NDIN. NDIM), HM(NDIM, NDIM),GT (NDIF NDIM),
0T (NDIN.NDIM), FT(NDIf,NDIM), BT(NDIM,KDIM),
RTC(NDIM. NDIM).HT(NCIM,NDIP), UXX(NDIR,NDIR),
UUUCNDIR, NDINY,GCSTR(NDIM,NDIM), RKFSS(NDIR,NDIM),
UXUCNDIF.NDIN).UR1(NDIM,NDIR), UR2(NDIR,NDIR),
UM3(NDIP NDIM),UN4(NDIM, NDIN), URS(NDIN, NDIR)
PEAL YD(NDIMI)
INTEGER 1FLGSZ

OO0

€

<«

fryoTTyvee R o ]
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CHARACTERMSGZER, MSCIT L, MSGREY
COMMON /MAIN1/NDIM, NDIR1,COMY
COMMON /RAIN2/CORS
COMmON/INJU/KIN, KOUT, KPUNCH
COMMON /RAINGNEIK2,NDIN3
COMNON/MAUNS /MSC
COMMON /RNTIM/RNTIME,DELTIN
COMMON/MRING/ICRT, ICBM, ICFA, ICGA, ICCR, ICGT, 1CQA, IRFR, IRFN, IRFT,
1 1RHT, IROR, 10,L0G, IRHM, NURDTS
WRITE (KOUT, 3 ) ‘ENTER THE LTOTAL RUK TINE aND THE SAMPLE TIRE)’
READ(KIN, X)RNTIHE DELTIN
11 FORPAT(ARL)
€ CALCULATE EQUIUALENT DISCRETE TINE UERSIONS OF, BR--BMD,GR--GMD:I,
C ON<—GXD, AND PHIM THE STATE TRANSITION MATRIX FOR
Cs xtnxxx:xxxxxx:xxxxxxxxxxzxxzxx:xxzxxxxxxxxxxuxxtxnxxxxxxxxxxxxnxxx
€ SINCE UORKSPACE 1S AT & PREMIUM, THE TRUTH MAODEL MATRICES
CPHIT,BTD,GTD,GTD, RTD WILL BE USED FOR THZIR CONTROLLER MODEL
C COUNTER PARTS DURING THIS ROUTINE BEFORE TWHE EGUIVALENT DISCRETE
¢ TIME TRUTH MODEL 15 COMPUTED. AT THAT TIME THERE 1S NO LONGEG ANY
€ NEED FOR THOSE GONTROLLER MODEL NATRICE SINCE THE CONTROLLER. 1S PuT
C INTO THZ PERFOMANNCE ANALYSIS FORMAT,PHIC BCY,.....GC
(2333293338333 33 32432233 3344¢82 338343234923 333 333883482438 333¢4332%3441
NSAU3eNDIM2 -
CALL RYINTG (PHIT, CTD, BTD,
YINTG(PHIT, CTD,BTD,RTD,GP, 0N, FF, BN, IRFR, 1CGN, ICBM, ICGN)
C RTD 1S USED RS Dummy’ UORK SPRCE IN GALL TO MYINTG '
NDIF2sNSRU3
CALL IDNT(IRFM,GTD,i.000)

VRITE(KOUT,Z)'ENTER R C IF THE UALUED ENTERED iN10 RF 1S A CONTIN

1UOUS TIRE UALUE TO FORM THE BASIS OF AN APPROXIMATE CRETE T
RN,ENTER A D OTHERUISE)* DISCRETE TIre
READ(KIN.ll)HSG!

IF (MSG1.EQG.°C’) THEN

C  APPROXIMATE RMD-RM/SANMPLE TIME

C1+1/DELTIN

CALL SCALE{RTD,RM, JRHM, IRHN,CL)

ELSE
C THE URLUE IN RN 1S DISCRETE TIRE ALREADY -
CALL EQUATE(RTD,RM, IRHM, IRHN)

END IF
€ SET UP™X , § , AND U FOR DDTCON
CALL XSU(GCZ,GClY,PHIC,GCX,BCY,BCZ, RKFSS W1, U2, UR3, UN4,UNS,
1 Fn,BR,IRFN, ICBH UxXX, UUU UXU, HIT
¢ 6CZ NOuw CONTRIMS X R PHIC CONTRINS u, GCV CONTh!NS s
C GCX, BCZ BCY,RKFSS WERE DUMMY UORK AREAS IN
{ DDYCON(PHIT,UXX,GCX,GCZ,BTD,PHIC, RKFSS BCY,.BCZ,GCV, U,
! CSTR BXU,uns, ur2, VA3, UR4, URS)
CiCY, BCZ GCY, PHIC GCZ,GCX,RKFSS ARE USED AS DUMMY UORK SPACE IN DDTCON
ITE (KOUT, %) DO YOU UISH TO CONPUTE THE KALMaN FILTER GRIN OR PIC
1! IT DIRECTLY (AS IN MAYBECK SECTION, 14. SIENTER AC TO COMPUTE E
INTER A P TO PICK 1T DIRECTLY>'
?Eﬂ? (KIN, %l)?SG%HE
Catl DKFTR(PHIT BTD,GTD,GTD,GCX,RTD,HN,GCY,6C2,PHIC,RKFSS, BCY, B22,
1FR,CH,0M, B, UM,V un2)
€Gex,G0Y,GC2,BC2, BCY ARE USED A$ DUMMY WORK SPACE IN CALL TO DKFTR

18
PKDIRC(GCX,PHIT,GCY,GC2, MM, BTD, RKFSS, ICBN, xarn IRHA)
¢ acxeaébiccz ARE, DOMMY UORKSPACES IN CALL 70 PKDIRC
END

EXTTTTTINTHE FOLLOUING CALCULATIONS, BCY,GCY,BCZ ARE DuUNRY UORKSP
S Tsresrsrsacte N L CIMETR LAST USE UHEN THEY' ARE’SET EQUAL TO THEIR F
cxxxxx:xzzngL UALUES FOR PERFAL SUBROUTINE
CaLL IDNTCIRFM,BCY,CL)
CAaLL HAT!(RKFSS HM, JRFM, IRMM, IRFP,GCY)
Cle~1.0
LU AaDD1 (IR, IRFM, BEY, GEY, BCZ,C1 )
C BCZ * I'R‘F§35¥'} i
' 3§§;E§xout £)'DO YOU WISH TO CALCULATE THE SAMPLED-DATA FILTER P
10LES? Y OR N
READ(KIN, 12 MSG
A ‘"ﬁﬁ?f?aéfw’.ég‘xarn IRFA, IRFR, P!
33%#:(xour 21°THE EIGENUALUES THAT conasspoun TO THE SAMPLED-DATA
4 FILTER POLES ARE...ss’
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CﬂLL H%lGN(PHIC LUV, WVE, IRFA, UNL)
CALL SCRLE(BCY GCiTR.%CBH LIRFAR,L1)

C BCY=-GCSTR * ICBAM

IF (n5G2.EG.C’) THEMN

C FORMULATE THE OOTIMAL CONTROL LAU FOR PERFAL

CALL MATI1(BCY,BCZ, 1CBN, IRFM, IRFM,GCX)

C GCX= =GCSTR(I-RKFSS(HM}) ICBN X IFRN

CALL MAT1(BCY,RKFSS,ICBM, IRFF, IRHN,CC2)

C GC2+ ~GCSTR(RXFSS) 1ICBM X [IRHN

IFLGCZ-0 .
CﬁLL PATL(BTD,BCY, IRFN, ICBM, IRFN,GCSTR)

Ci-1.0
CALL RADDL (IRFM, IRFR,PHIT, GCSER ,BCY,C1)

C BCYs PHIT-BTD(GCTR) frem “x

o 60 o0 o

C PHICe PHIT(I-RKFSS(WM))-BTD,CCSTR IRFM X JRFN

URITE(KOUT,X)° *

URITE(XOUT.X)’DO YOU UISH TO cancunavz THE POLES OF THE OPTIMAL
1 L0 SAMPLED-DATA CONTROLLER?

READ(KIN, 12456

IF (MSG.EQ.’Y’) THEN

RITE(ROLT &5 “THE EICENVALUES THAT CORRESPOND TO THE POLES OF TH
LE OPTIMAL £0 CONTROLLER ARE.»e.eoeos’

CALL REIGN(BCY,WW1,WV2, IRFA,PHIC)

END IF
CRLL MATL(BCY,BCZ, IRFM, IRFP, IRFM,PHIC)

PHIC -(PHIT-BTD(GCSTR))(I'RKFSS(HH)) IRFR X IRFP

CALL MATL(BCY,RKFSS,IRFN, IRFN, IRKM, BCZ)

BCZ-(PH!T-BTD(G STR)IIRKFSS IRFN X IRHM
ELS
FORHULRTE THE SUBOPTIMAL CONTROL LRU USTR=-GCSTR(X hT TSUB 1 HINUS)

CALL EOUATE(GCXXBCY ICBM, IRFN

GCx»~GCSTR  1CBM

IRFA
CALL MATI(PHIT,BCZ, IRFM, IRFM, IRFM,GCSTR)

Ci+1.9

CﬂLL MATL(BTD, GCX,IRFH ICBM, IRFM,BCY)

URITE (XOUT, 2

WRITE(XOUT, t) DO _YOU UISH TO CRLCULhTE THE POLES OF THE OPTIHA

1L LG SAMPLED DATA CONTROLLER? v

READ(KIN, 121MSG
IF<(NSG.EG. Y’ ) THEN
CALL ®mADD1(IRFM, IRFM,PHIT, BCY,PHIC,CL)
URITE (KOUT, 1)’ THE EIGENVALUES TWAT CORRESPOND TO THE POLES OF THE
1OPTIMAL 10 CONTROULER ARE.......’
E&ngrﬂEIGN(PHIC L,WUL, UV, IRFN,URL)
CALL MADD1(IRFH,IRFR,GCSTR,BCY,PHIC,CL)

-

CALL MAT1(PHIT,RKFSS, IRFM, IRFR, IRHN,BCZ)

C BCZ-PHIT(RKFSS) 1RFR X IRWNW '

181

1e2

107

DO 101 1-1,IRFN
DO 1e1J=1, IRHN
GCZ(IQJ:-O

IRY»{

DO 162 1=1,MDIR

DO 162 Jei,IRY

GCY(I.J)-O
BeY(l,J)e8

Do 1%711-1.1000

;Scs‘PHIC FOR THE SARPLED DATA CONTROLLER IS’
CALL MMATIO(PRIC, IRFK, IRFM,10,KIN,KOUT,NDIN, NDIM)

TE(KOUT,x)’ *
SE§TE(KOUT 2)°D0 YOU WANT TC CRLCULATE THE EIGENUALUES OF THE LaG

1 CONTROLLER STATE TRANSITION MATRIX, PHIC? V N>
-RERD(KIN, 12)KSG

IF (mSG. EC./Y’) THEN
VRITE(KOUT,2)’ 7HE ElGENUALUES OF THE LO‘ CONTROLLER STATE TRANSITI

108 BATRIX ARE .
CALL HE!GN(PHIC UUX Wu2, IRFN,unt)
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END IF

MSG=‘BCZ FOLLOWS, BCY=®’

CALL MNATIO(BCZ,IRFM, IRHR, 10,KIN,KOUT,NDIF, NDIF)
MSGe ‘GCX FOR THE SAMPLED DARTR CONTROLLER 1S’
CALL MMATIO(GCX,ICBM, IRFM,10,KIN,KOUT,KDIR,NDIR)
IF (RSG2.EQ.’C’) THEN

NSG=‘GCZ FOR A CONPUTED KFSS’

ELSE
nSGe’GCZ FOR KFSS PICKED DIRECTLY’

END IF :
CALL MMATIO(GCZ, ICBM, IRHM, 10, KIN,KOUT,NDIR,NDIM)
WRITE(KOUT,X)’ GCYy IS SET « ©°

C THIS 1S A REGULATOR SO YD 1§ ALUAYS ZERO
NSAU3I=NDIN2

*NDIM
QE{EEHYI%TG(PHIT,OTD,STD.RTD.GT.OT,PT.BT,XRFT.ICCT,ICBT,XRHT)
C RTD IS USED Rg DUMRY UORK SPACE IN CAL TO MYINTG
NDIR2NSAY
¢ PHIT,QTD,BTD ARE EQUIV. DISCRETE TINE REPRESTATIONS OF TRUTH nootL
¢ nﬁTRI%?TE(KOUT z)’ ¢
SRI?E(KOUT:x)' VAS THE VALUE ENTERED IN RT DURING INPUT A CONTINUO
1US TIME OR A DISCRETE TIME VALUE? ENTER A C FOR CONTINUOUS , A
$ D FOR DISCRETE VALUE>’
FoRRAT (ALY o
18 IF (Hggig?ﬁ'C‘) THEN
-Ciegs
' CRL{ SCALE(RTD,RT, IRHT, IRNT,C1)

SE
EkLL EGUATE (RTD,RT, IRHT, IRHT)

END IF
¢ RTD IS THE DISCRETE TIME APPROY OF RT
Ciet.@
CALL IDNT(IRFT,GTD,C1)
€ GTDeGTD = I
RETURN

END
IDECK DKFTR
SUBROUTINE DKFTR(PHINM,BMD,GMD,GND, U1, RRD, KM, UR3,UNS, UNE, RKFSS,
1 FE,H2,FR,GP, 0N, BN, UNR2, UNG)
c b THIS ROUTINE CALCULATE THE STEADY STATE KALMAN FILTER GARIN PATRIX
C FOR A SAMPLED ATA CONTROLLER
REAL PHIM(NDIN, NDIN),BMD(NDI™,NDIM),GMD(NDIN,NDIR),
GMD(NDIM,NDIF),Un1 (NDIN,NDIM),RPD(NDIN,NDIN),
HR(NDINM,NDIM), UM3(NDIM,NDIM), URS(NDIM,NDIR),
WRG(NDIN,KDIM), RKFSS(NDIN,NDIM),F2(NDIM,NCIN}
LH2(NDIN,NDIR) FM(NDIM, NDIM], ‘
GM(NDIM,NDIFM),GMINDLIN,NDIM),BM(NDIM, NDIN), °
UN2C(NDIN,NDIM),UN4 (NDIN,NDIR) ‘

s gt B ot

REAL COM1(1),COM2(1)
CONMON /RAINI/NDIM,NDIN1,COML
CORMON /INOU/ KIN,KOUT,KPUNCH
CORMON /RNTIM, RNTINE,PELTIN
COMMON/RATIN4/NDIR2, NDER3
CORMON/NAUNS/NSG
i S
/MAING/ICET, ICBR, ICFA, ICGA, ICGN,
1 IRHT, IROR, 10,100, IRHA,MURSTS oo [COM. 1CCT, 1C0A, IRFA, IRFR, IRFT,
¢ seffEeTE s
: ATES AS IN THE CONTINU
 URITE(KOUT E)7IF 'YOU PLAN T0 USE TE noszogapT§¥§xSA$Ecu~zoue F
L :é?:::?u¥g¥xg.;r:%:; rongonxrv THE UALUE OF NUMDTS, THE NUMEER G
£ DETERMINISTIC OU WANT TO CHANGE NUMDTE> ¥ OR Ry
NUMSAUSsNUMDTS
TR, v e
+X)EN HE W VALUE ’
EES”}E’""’"““”TS NEU VALUE OF NUSDTS FOR THIS RUND

URITE(KOUT,%)°NUMDTSs ¢
IDS-NURDTSSS DTee o NURDTS

IRF2+« IRFR-NUPDTS
IF(NUMDTS.EQ.@) THEN
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C STORE SYSTEM MODEL IN INTERMEDIATE MATRICES CONPATIBBLE

¢ UITH THOSE BELOU WMEN THER ARE DETERMINIST
CALL EGUATE(F2,PHIM, IRF2, [RF2) 1C STATES REROUED
CALL EGUATE(uMi,cHD.IRF2. IRF2)
CALL  EGUATE(H2, i, TRWM, TRF2)
CALL ECUATE(\MS,BAD, IRF2, ICBM)
EtgL EGUATE (UM2,0MD, IRF2. IRF2)

C DELETE THE DETERMINISTIC STATES FORM THE MoD

C THE STEADY STATE XALMAN FILTER GAIN RATRIG -~ Lot0 TO FORM
DO 2112 1+IDS,IRFM
II- x-nunnts
DO 2112 J+10S, IRFN
JJeJ-NUMD

2112 UNaCII, JJ)-FH(! N
DO 2113 11, IRNRA
Do 2113 J- 166 TRFn
JJ» J-NUPDTS

2113 H2(1,JJ)eHACT, 00

C FORM B2D G2D NOW

DO 2115 I~IDS,IRFA
I1=I=HURMDTS-
DO B1iE Jei,ICBN

2145 UM3CII,J)+BACI, )
DO 2114 rns.iarn
xx-z-nun

6 2104 Jus. 160N

2114 uﬂt(!I.J)-GH(X.J)

11 - FORMAT(AL)
NSaUsNDINZ
NDIN2«NDIN
CALL MYINTG(F2,Un2, UMs,uHE, UN1, GM, UN4, UR3, IRF2, 1CGN, 1¢3m, Ieom)
nnxne-nsao
c.
gnLL IDNT(IRFE umy,c1)

¢ CQLCULQTE GMD (QMD) GMDY
Call MATICIRF2,IRF2,UM),UNE, RKFSS) =
CRKFSS IS DUMMY UORK SPACE AT THIS POINT IN THWE PROGRAR
~ URITE(KQUT,3)’ DO YOU UISH TO MODIFY THE QUMD MATRIX BY THE DOYLE
-1 AND STEIN TECHWNIQUE FOR CONTINUOUS TIKE CONTROLLERS EXTENDED TO
1 _THE DISCRETE TIME SYSTEMS, Y OR N>~
RERDI(XIN, 11)MSGY
IF (MSG1.EQ.’Y’) THEN
CALL DAS2(BM,RKFSS,Un1, ICBM,UM3, IRF2,W16
¢ RETgRgSIP HODIFIED ond ValUE TO BE USED IN FINDING RKFSS
N,
g CALCULATE THE KALMAN FILTER GAINS, RXFSS, FOR.EITHER THE MODIFIED
c

GMD OR THE UNMODIFIED ORD .
QnD 1S STORED IN RKFSS .
CALL TRAMSZ2(IRHR, IRF2,H2,U13)
CALL KFLTRCIRF2, TRHM, ra,ura RKFSS,RMD,UNG, WML, UNS)
WG =PRSS, UMS CLOSED LOOP MEAS MATRIX
UMy + RKFSS WITHOUT THE ZEROS FOR THE DETERMINISTIC STATES
C  NOU ADD THE ZEROS FOR THOSE STATES
IF (NURDTS.EQ.&)THEN
DO 2029 X'l

2029 RKFSS(I, J)-UHX(I 3
ELSE

DG 2119 Je=3,IRKN
DO 211811, NJHDTS
2118 RKFSS(1,J)00
DO 2119 1+1DS, IRFM
11e1-NUNDTS
2119 RKFSS(1,J)eWMi(I1,J)

OHO

END IF
C NOU U?!?E OUT THE RKFSS MATRIX

27
nSGe ‘STEADY STATE SAMPLED DATA KALMAN FILTER GAIN MATRIX®
CALL MRATIO(RKFSS, IRFR, IRMM, 10, KIN,KOUT,NDIM, XDIM) *
NUMDTS «NUNSAV -
RETURN
END
sDECK DRS2
SUBROUTINEZ DaSe(Bm, 0 LU, ICBR, UM3, IRFY UN1)
REAL BM(NDIM,KDIM),QND(NDIN .ND[H). U(NDIH NDIR),
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1 UMI(NDIM,NDIM), URIINDIF,NDIM)

THIS ROUTINE ALLOUS QN0 TO BE RCDIFIED IN A MANNER SIMILAR T0 THWE DO

Q
v

YLE AND STEIN TECHNIQUE FOR CONTINUOUS TIME SYSTEPS.
"DRODaGMD +(SQXSQ)(BR(VIBNT)ITSAMPLE TIME
=ERE SQ IS A SCALAR DESIGN PARPEZTER ANMD U IS A POSITIVE DEFINITE

SYMMETRIC.NATRIX DESIGN PARAMETER. AS  SU--=>TO INFINITY IN THE CO

NT
C

-
i

11

Aot and ot O

INUQUS TIME CASE, ROBUSTNISS PROPERTIES OF A FULL STATE FEEDBAZK
ONTROLLER ARE RECOVUERED. THIS ROUTINE IS BRSED ON E. LLOYDS NASTERS
HZSIS ,D81, AFIT

CHARACTER MSG16€ ’

REAL COMI(1),C0M2(1)

COMMON /FAIN1/NDINM,NDINY,COML

COMMON /RNTIM/RNTIME,DELTIN
COMMON /KAUKS/MSG

COMMON /MAIN2/, COMS
COMON 7 INOU/KIN,KOUT,KPUNCH
USITE(KOUT,11)° *

FORMAT (ARY)

WRITE(Y.OUT, T’ THIS ROUTINE MODIFIES THE UALUE OF Q%D USED TO CeLCU
1LATE THE STEADY STATE KALMAMN FILTER GCRIN. THE MODIFICATION PERFOR
{MED 1S SIMILAR TO THE DOYLE AND STEIN TECHNICUE FOR CONTINUOUS-TIN

£ €;§T$Hsﬁg F°“;§ gg?PLfTE DESCRIPTION SEE E. LLOYDS MASTERS THIS:

, . DB1. IEFLY THE MODIFICATION ATTEMPTS TO ENHANCE ROELET
ESS OF TWE LOG CONTROLLER RND IS onon-cnntonn)gﬂp?oscxsoxbszxn
T(BM(VIBRT)). .. THE LARGER THE VALUE CHOSEN FOR THME SCALAR S0 TH
Q¥o§§ 20;93;?§3§ gggou§:¥a;sonnnaggs{ocruLLsTATs FEED-BACK), U K
s ¢ . , CH NG Us P :
LY TO ALL CONTROL INPUTS.’ 1 ADDS PSEUDONOISE Eque
u§{$55288¥“*’é~'ea T ’

,XI’ENTER 1== TO IMPUT $Q, 2-- TO INPUT U, 3~- T0

1 COMFUTE MODIFIED @, 4=~ TO EXIT ROUTINE.......NOTE'§ ,2 RMUST BE
1 RCCOMPLISHED BEFORE 3, AND 3 BEFORE 4, BUT THAT {,2,3, CAN BE
1 DONE ANY NUMBER OF TINES BEFORE USING 4°

URITE (KOUT,11)’ ’ )

WURITEC(KOUT, X} ENTER OPTION)‘

READ(KIN,2)I0PT

G0 T0 ¢ 1,2,3,4)I0PT

WRITE(KOUT,11) *

URITECKOUT, X} ENTER 50> -
READ(KIN,2)S0

GO T0 S
RITE (Kourt 320 1

UT,2)’V IS INITIALIZED TO THE IDENTITY MATRIX UPONM ENTRY T
10 THIS OFTION. IF YOU DESIRE TO CHANGE U ,..REMIPBER IT MUST BE
1 POSITIVE DEFINITE..... ENTER THE 10 OPTION (1/0 OPTIONS ARE
chRfNZED AT THE BEGINNING OF THE PROGRAM) ELSE ENTER A @ '

CALL IDNT(ICBM,V,C1)

READ(KIN,X)10 ’

1IF (10.EQ.@) THEN .

GO TO S .

ELSE

NSGe *THE CHOSEN U MATRIX 18¢

g:nggnﬁTIO(U,ICBﬂ.ICBH.IO,KIN,KOUT,NDIH.ND!H)

m Twom

Y
L
[}

¢0 70 S

WRITE(KOUT,11)’

CALL MAT4(U,BM, ICEM, ICBR, IRFA,UNI)
CALL RATI(BM,UN3, IRFR,ICBN, IRFR, UML)
C1+502SQsDELTIN

CALL MADDL(IRFM,IRFN,OMD,UN1, U3, C1)

105
RSGe*MODIFIED @ MATRIX, GMODe’
CAL# MMATIO(YN3, IRFM, IRFM, JO,KIN,KOUT,NDIM, RCIM)

G0 TO 6
CALL EQUATE(QMD,UMI, IRFM, IRFN)

¢ REPLACE THE VALUE IN OND WITH GMOD
RETURN

END
sDECK DDTCON

SUBROUTINE DDTCg:;FHIH,UXX,Uﬂl,X,BHD,U.UHE.FHIPRﬂ,
XPRIN,S,LUU,G6S )

1REQL COM1(§),C0R2(2), PHIM(NDIN,NDIM),

JUXX (NDIM,NDIM),UML(NDIM,NDIM),X(NDIN,NDIN),

1 BMD(NDIM,NDIM), UCNDIM,NDIN),UR2(NDIN,NDIN),

1 PHIPRM(NDIM, NDIM), XPRIM(NDIP, NDIM), S(NBIM, NDIM),

1 WUUINDIM,NDIP),GCSTR(NDIM,NCIM)
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CHARaCTER nsczes

7RAIN1/NDIN,NDIMS , CO!
CORMON smaTng. coms Dini.com

COMRON ~MAIN4/NDINZ,NDIN3

COMMON ~ INCU/KIN,KOUT, KPUNCH

Comon JRNTIN/ RRTIPE.DELTIN

«/MAING/ICBT, ICBR, ICF

. IRH*'Iﬂoﬁ‘xo.Lcc’iR"n'ﬁsgpgéxcca.:ccn,1ccr,zcaa.xnra,xnrn.rarr,
COMMON ~MAUNS /RS

C_THIS SUBROUTINE COMPUTES THE STESDY STATE oP

CX GCSTR, BASED ON A LINEAR GUADRAT ORThAL FEEDBACK GAIN WATRI
Cx_ GesTR, BASED. ATIC COST CRITERION, FOR R SAMPLED

€ SEE MAVSECK CHAP 14 FOR & DETAILED DISCUSSION OF ALGORITHR AND
cx‘!xx:;‘zl:t!‘!zzztz:xt,‘xz!!txx:x‘xz‘:‘t‘!:““t‘:‘3"!::!‘““3‘!:‘!’

c
C TRANSFORM SYSTEM SO KLEINNAN RICCAT] SOLUER UILL HANDLE S NOT=9
‘c:hgngﬁlﬂlT(URZ.U,ICDH.GCSTR,S.IRFH.BHD.UHI.PNIPRH,X.XPRIH,

¢

€ um2.ulIzST

ChOU COMPUTE KPRIM FROM RICCATI EQUATION
CALL MAT3ICIRFM, ICEIM,BMD,GCSTR, LUM1)
CALL DRICCIRFM.PRIPRM, N1, XPREIR, X,CCETR)

¢ GSSTR CONTAINS INFO THAT §6 NOT USED

€ X COMTAINS $XKPRIMES IRFM X IRFM

¢ "NOU CONPUTE GCSTRPRIN

Cisi.0

CALL MAT3I(ICBM,IRFM,BMD,X,GCSTR)

CALL MADD1I(ICBM, ICBM,U,GCSTR,LML,C)
CALL GRINUV(ICENM,ICBM,UM1,GCSTR, MR, NT)
IF (MR.NE.ICBM) THEN

PRINT %,/INVERSE OF U IN DDTCON NOT OF FULL RANK, RANK 1S /.,
lezg.irRﬂNK SHOULD BE =ICBMe-, ICBM

CALL MAT4(GCSTR,BMD, 1CBM, ICBN, IRFN, UML)

CALL MAT1(UM1,X,ICBM, IRFM,IRFM,GCSTR)

CALL MAT1(GCSTR,PHIPRM, ICBN, IRFN, IRFP, URY) -
C WUMieGCSTRPRIN« ((U+BMDTIKPRIMIBMD)I ) (BEDIKPRIMIPHIPRN )
C ICcBM X IRFM

CALL MADDI(ICBAM, IRFN, UML, UM2,GCSTR,CE)
¢ GCS;% Igiﬂ X ICBr

.

MSGe'THE OPTIMAL STEADY STATE FEEDBACK GARIN MATRIX,GCSTR’
CALL MMATIO(GCSTR, ICRN, IRFP,10,KIN,KOUT,NDIM, NDIN)
RETURN
END
TDECX PKDIRC
SUBROUTINE PKDIRC(U,PHIH,UHI,UHE.HH.BHD.RKFSS.}CBH.IRFH,IRHH)
REAL COM1(1),CON2(1),UINDIN NDIM),
1 PHIM (NDIR,NDIN), UM{(NDINK,NDIM), UR2(NDIF, NDINM),
1 HE(NDIM,NDIN), BMD(NDIM,NDIM), RKFSS(NDIM,NDIM)
CHARACTER MSG360,MSG1xY
COMMON /MAINI/NDIM,NDINE,CONY
COMMON /MAINS/CON2
COMMON /NAUNS/ MSC
COMMON /INOU/ KIN, KOUT,KPUNCH
C &S IN NAYBECK, SECTION 14.5, RKFSSePHIMI(BMD)W 25Q. SO 1§ A
€ SCALAR DESIGN PARAMETER AND W IS ANY NONSINGULAR M X M RATRIX.
8 NAYBECK SUSGESTS THAT UetWHM(PHIMIIBMD)T IS A POSSIBLE CHOICE.
¢

TME RKFSS PICKED AS A RESULT OF THIS ALGORITMM FORMS THE BARSIS
OF A SUBOPTIMAL CONTRL LAU,USTAReGCSTRIX(TI-NINUS)
URITE(KOUT,8) ' *
URITE(KOUT,3)’THIS ROUTINE CALCULATES THE STEADY STATE KALMan FILT
1ER GAIN DIRECTLY( THAYT 16 UWJTK OUT USE PFMSS FROM THE RATRIX RICCRT
41 EOQURTION RS THE BAS1S OF KFSSII EQUATION AS IN SECTION {4.5 ,ray
{BECK. KFSS+SQx(PHINIIBMD(W) UKERE THE SCALAR 5G AND THE RMATRIx
1 U ARE DESIGN PARAMETERS...THE LARGER THE S$G THE MORE ROBJSTNESS
1  THE SUBSEGUENT CONTROLLER WILL WMAVE. NCTE THERE RRE NO STAEILIT
© 1Y CLARIMS FOR THE RESULTING CONTROLLER, 850 BE SURE TO CHECK Twi €I
1GENVALUES OF THE SUBSEQUENT CONTROLLER.'
URITE(KOUT,18)° ¢
12 FORMAT(AY/) :
WRITE(KOUT,X)’THE OPTIONS FOR THIS ROUTINE ARE 31->CHOOSE SC, 2-> C
{HOOSE U, 23-, COMPUTE AND PRINT RKFSS, 4-> EXIT ROUTINE........’
4 WRITE(KOUT, @)’
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VRITE(KOUT,E)'ENTER OPTION>*
READ(KIN,2I1I0PT
GO Tg (1,2,3,4)I0PT

co T
i URITE(KOUT 12y’

1URITE(KOUT t)’ENTER A VALUE FOR SG, LARGER 5@ GIVE BETTER ROBUSTNE

L3
REQD(KIN t $1-¢]
G0 70 5

e VRITE(KOUT,12)’

URITE(XOUT, 2)°DO YOU WUANT TO PICK U ARBTRARRILY OR DO YOU ggﬂ? ¥ T0

{ BE HM(PHIMI)BNMD -~INVERSE RS IN NAYBECK SECTION 14.G.

1 {RHM MUST BE EQUAL TO ICBM SINCE U NMUST BE ICBR X xCBH

1A% A FOR ARBITRARY, W OTHERUISE)>’
READ(KIN, 11 1RSG1
11 FORMAT(AL)
* 1F(RSG1.EQ. ‘A’ )THEN

URITECKOUT, X )'ENTER 170 OPTION FoR U(SEE INPUT ROUTINE FOR EXPLANA

1TION OF INPUT OPTIONS 1,2,3,4,5,6)
Sl | e
CALL MMRTIOW, IC)H ICBH 10, KIN,KOUT,NDIN,NDIN)

ELSE
< COHPUTE U as DESCR!!ED AiOUE
IF _CICBM.NE,IRHM) TH

ITE(KOUT X)‘NOTE TMﬁT IRNM RMUST EGUAL ICIH T0 USE TH1S BETHOD OF

1GCALCULATING W, ICBMe* ICBNM,* IRHWMe ’/ ,IRN

EN IF
ALL EQUATE UMY, PHIM, IRFM, IRFR)
¢ GHINU BESTROYS THE cALLENG aRRaY

CﬁLL GMINVCIRFM, IRFM, WML, UN2, MR, 0T)
CALL MAT1(HM,UN2, IRHM, IRFN IRFH, UML)
CALL HRTt(URl BND, IRHH IRFA, ZCkH unz)
g:%LIEHINU(IRRH.ZCDH,UHE W, AR, RT)

G0 70 S
WRITE(KOUT,128)* *
CﬁLCULﬂTE RKFS6
CALL EQUATE (UR1,PHIM, IRFN, IRFR)
c GHI:¥~DESTROYS catling ARRAY

CALL GRINV(IRFM, IRFN,UR1, N2, MR, NT)

CALL MAT1(LM2,BRD,IRFN, IRFH,ICEM, UML)
CALL MAT1(UML, U, IRFN, 1Cbn, ICBM una
CcALl SCALE(RKFSS use, IRFH.IRHH Q)

10=

MSGe *RKFSS, PICKED DIRECTLY IS~

ggL%oﬂgﬁTIO(RKFSS , IRFN, IRHM, 10, KIN,KOUT,NDIR, NDIH)
4 RETURN

END
TDECK PRINIT

oW

tS%:?:gTINE PRINIT(UMZ,U, ICBN,GCSTR,S, IRFN, BMD, UM, PHIPRN, X, XPRIN,
TH1S SUBROUTINE COMPUTES THE PRIMED GUANTITIES NEEDED UHEN USING

€  KIEINMaN RICCQT! S R
¢ mATRIX U OLVER UITH NON 2ERO CROSS COST WEIGHTING

REAL UHZ(NDIH NDIM), GCSTRINDIN,NDIN),S(NDIN, N ),
iBUD(HDIN, NDIH) UR!(ND!R NDIM), PHIPRR(:DIHIQDIgI"

1 XCNDIM,NDIM),XPRIN(NDIA,NDIN
REﬁL COHl(i) COHE{ IR, NDIM), PHIRC(NDIN, NDIN)

1)
COMMON /MAIN{/ NDIN,NDIML,COMN
COMMON /MAINa/COM2
COMMON 7/ INOU/ZKIN,KOUT, KPUNCH
c NOU COHPUTE XPRIM, PHIPRNR
ALL EOUATE(UHZ U,1CM,I1C80)
c GHIN:TDESTRIVS THE CALLING ARRAY

catl GH!NU(IC’H 1CBM, U2, GCSTR, MR, 1T
C GCSTRs Ul ICBM 1cen
CALL ﬂATdtGCSTR §,ICBP, ICBM, IRFR, UM}
cunz= UI(ST ICBM X IRFR
CGLL Hﬁ?l(lﬂb Un2, IRFM, ICBN, IRFM, UML)

Ci=
CGLL HﬁDDI(XRFH.!RFH,PHXH.UHX,PH!PRH,C!)
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C PHIPRMe PHIM-BMD(UIIST IRFA X 'IRFM

CALL MAT1(S,un2, IRFR, ICBN, IRFN,
caLlL HQDDI(IRFH IRFR, X.UH! XPRIgHéI))

g XPRIMs X-S(UI)ST IRFM X IRFM

RETURN

END
*DECK RGS -

OO0

1 KXA PXQ Rﬁ PXUA ctza,

SUBROUTINE RGS(GCSTR,RKESS, GCX, GCY, 6
1 URL,UN2,LN3,UN4, UNS.URG, UR7, URE, urs°ﬁafifa5§z oS yn'
1 UMA,UMB,UNC, UMD, UME, UNF.FT, BT,CT,HT. 0T, RT, -

L FN,BA,GN,HM, 0%, RN, X0, PO, UXX, WU, UXY, FA, BA, GA, 08, GUR,

s iR phvelscia i TrLGSE, Sricto o o B
Aax, PXTHIN, HUMX HUH

1_PUOUT, PXTOUT, RXTOUT . RUOUT, W3, Wu4 I, rxamax, mxanIn,

REAL COM1(1),C0MR2(1)

THIS SUBROUTINE SETS UP A CONTINUOUS, DISCRET
ot BT s, SO M O R R e
A
LYS1S SUBROUTINE, PERFAL, _ orn OR THE PERFORNance

CHARACTER MSC360 T o e
REAL FT (NDIM,NDIM),BTC(NDIM,NDIN),GT(NDIN,NDIN),

1 (NQIN NDIM) R~ (NDINNDIN),FRCNDIR,NDIM)
XIH(NDIHQRDf * f pin,

N, Gﬂ (NDIM,ND H),XO
1HM(NDIN, NDIH) (NDIM,NDI PO(NDIH.NDXH),
10T (NDIN NDIN) 8T cnnzn.nnxn»
10csTR(NDIN M,NDIM), RRFSS(NDIM, NDIM),

1UUL (NDIR), U2 (NDER), UXUCNDIR, NDINS,

1UML  (NDIM,NDIM),Un2 (NDIM,NDIN),UR3(NDIM,NDIN),
"1WM4  (NDIM,NDIM).UNS (NDIM.NDIM),UMS(NDIM.NDIM).
1Un7?  (NDIN,NDIM),uUn8 (NDIM,NDIM),uUMS(NDIM.NDIN),
1UM1e (NDIM,NDIM),UMA(NDIN2,NDIN2), UNB(NDIN2,NDIN2 ),
LUNC (NDIM2,NDIM2) . UMD (NDINS, NDIM2 ), UNE (NDIM2, NDIN2),
1UNF (NDIM2,NDIM2 ). WUU(NDIN, NDIA ), UXX(NDIN,NDim), - .
1FACNDIM2,NDIN2), BA(NDIM2, NDIN2 ). GANDIAR, NDIN2),
1MXACNDIN2),GCX(NDIN, NDIN},GC2(NDIM,NDIN),

10ACNDINZ, NDIN2), PXA(NDIN2.NDIN2 ), PXVA(NDIMNZ, NDINR),
LMUOUT(NDIM ), MXTOUT(NDIN) , PXTOUT (NDIN)

REAL PUOUT(NDIM),YD(NDIR3), cun<ubzna NDIM2), .
1MXAMINC(NDIA), MXANAX (NDIM), MUNIN(NDIN),
IHUBQX(NDIH),PXTHIN(HD!H),PXTHAX(NDIH).
1PUMINCNDIR), PURAX(NDIM),GCZAINDING, NDIN2),

{RA(NDINZ,NDIM2),BCY (NDIM,NDIM),BCZ(NDIN,NDIN),

1UUICNDIN2), UV4CNDINZ),
1GCY (NDIM.NDIR),FC  (NDIM,NDIM)
INTEGER erccz.xnv

REAL RUCNDIM

CONHON_FRHTTR/ nurxnz DELTIN
COMMON /MAIN2/COM

COMMON /thﬂl/ﬂblﬂ.ﬂblﬂt,COﬂt
COMMON + INOU/ KIN,KOUT,KPUNCH )
COMMON /MAIN4/NDIR2,NDIR3

COMMON /7RAUNS/ MSG

COMMON /MAING/ ICBT,ICBM,ICFR, ICGA, 1CGN, ICGT, ICOR, IRFA, IRFN, IRFT,
1 IRHT,IRQA,10,L0G. IRMM, NUNDTS

WRITE(KOUT,X)"ENTER A € FOR CONTINUOUS TINE LGG CONTROLLER AND &
D FOR A SAMPLED DATA LGG CONTROLLER)’
READ(KIN, 12, END+2933 MSG
IF (MSG.EQ.-C’) THEN
IFLGSD=0
CALL CLOGRS(GCSTR,FN, lﬂ erss R, GCX, GCY, GCZ, BCY, BC2Z,FC, YD,
1 RM,GN,FT,BT,GT,QT,RT
szv erccz wms,um2,im3’

PO.CR R4 UM uns 4 UMB.L UL, W2, UL, UXK, KO, UXU, U7, U8
- co 10°2633

END IF
CALL FRMAUGCQT,RT,FT, BT, GC2,HT, 6CX,8C2,FC, GOV, BCY, 6T, X0, PO, FA, DA,
1 GA,0R,GUA, UM, UN2, URA, URE, UNC
fry, ercéz xﬁLcsca
VRITE(KOUT, %)’ *

IJRXTE(KOUT £)°D0 VOU U!SH T0 CALCULATE THE EIGENVALUES OF THE CLOS
L1ED-LOOP F MATRIX?
READ(KIN, 12)MSC
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IF (NSG.EQ.’Y’) THEN

NSAU1*NDIN

‘ NDIM=NDIR2
L T

H .2)° GENVALUES OF THE CLOSED-LOOP F MATRIX ARE...’

CALL MEIGN(FA,UU3,Uu4, IRFA,UNA)
NDIM=NSAUL
NDIMS=NDIN¢1
END IF

CaLL MYINTG(URA,UMB,UAC, UFE, GA, 0R, FA, B4, IRFA, 1CGA, IRV, IRGA)
C  SOME SAMPLED DATA CONTRCLLER IS WANTED CoTT
IFLGSDs1

WVRITE(KOUT,.X)‘DO YOU VISH TO WERELY DISCRETIZE THE CONTINUOUS TIRE
1 CONTROLLER, Y OR N>’

READ (KN, 12 END=2933 IMSG
IF (WSG.EQ. Y’ )THEN
. WRITE CKOUT, 2 )/ FEXETLSENOTE TMAT UMEN ENTERING THE TIME INCRENENT
1IN THE CONTINUOUS TIME CONTROLLER SET UP,  REMEMBER IT WILL BECO
1mE TME SAMPLE TIME FOR THC DISCRETIZED CONTROLLERSXzzzXriz’
QALL CLOGRS(GCSTR FN. BN, RXFSS, WM, GCX, 6LV, 662, BCY, BCZ, FC, YD,
1° ”R,GR,FT, BT, CT, 0T, RT, T, IRV, IFLGCZ, UR1 | UMz, un3, PO, CN,
{77 Un4, UMS, UMEB , WU1, UU2, LUU, UXX, X0, UXU, U8 7, U
IF (10.EQ.0)THEN " X+ X0, UK, LR7, UAB)
60 TO 2933
EKD IF

CALL DSCRTZ(UML,WUMZ, M3, M4, IRFN, DELTIN, FC,BCY, IRY, BC2Z, IR
! UH%AUHS.GCSTR.ET,OT,FT:BT. RFT, 07 ICtT.fRHT:RKFég.gffcgg:

ICEM) i
3:%35:583;':;‘96 YOU UANT 10 CA '
230’ u LCULATE THE EIGENVALUES OF THE STAT

1€ TRANSITION MATRIX FOR THE DISCRETIZ NT ;

e AneNEITION e ED CONTROLLER? Y OR N>

IF (NSG.EQ.’Y’) THEN -
URITE (KOUT. X )/ THE EIGENUALUES OF THE STATE TRANSITION BATRIX FOR T
{HE DISCRETIZED CONTROLLER ARE...° .

CALL MEIGN(UM2,WV1,Wu2, IRFA,BCY)

END IF
C RKFSS, IN PRECEDING CALL STATERENT ARE MERELY DUMMY WORK SPACES
' ¢ GCSTR CONTAINS BCZD UPON RETURN FROM DSCRTZ
CRLL-FRHAUG(UHS,RKFSS,UHS.GCSTR,GCZ.HT,OCX,UF4.UHE,GCY.U53.UH1.XO, - .
i POJ’Q,BR,Gﬂ,Oﬂ,GUﬂ,BCY,FC,UHQ,UHB,UHC,UHD.UHE,UHF,HKR,PXR,RQ,
1 PXUR,GC2R, IRY, IFLGCZ, IFLGSD)
ELSE
1FLGCZ=0
CALL DLOGRS(GCX.GCY.GCZ.BCY,ICZ,UHB.FC,U!E.UHS.UHI,Uﬂ4,FH.BH.
i OH,GH,RH,HH,GT.OT,FT.BT.RT.HT.UXX,UUU,GCSTR,RKFSS.YD,
1 IRY,IFLGCZ,UXU,UNE,URT7, (N8, UM, Unie, v, wug) ,
CALl FRﬂhUG(Uﬂi.UHE.UH3.UH4.GCZ.HT.GCX.BC2.FC.GCV.BCY,UHS,XO.
- 1 PO.FG.BA,Gﬂ.Oﬁ.GU&.RKFSS,GCSTR,UHG,UHB.UHC.UHD.UHE.UHF,HXQ.PX&,
1 RA,PXUAR,GCZA, IRY,IFLGCZ, IFLGSD) ‘
c RKF%&.G%?TR ARE DUMMY UORX SPACE IN CALL TO FRMAUS
D
NSAU1aNDIM
NSaU2e=NDIN1
NDIMieNDIM2+1
NDIMeNDIN2
tall EQUATE(UMA,FA,IRFA, IRFR)
CALL EQUATE(UMC, BA, IRFA, IRY)
CALL MAT1(GA,OR, IRFA, IRGA, IRGA,UME)
CALL MATACWME,GA, IRFA, TROR, IRFA,UNB)
i,
L 4
NOTg FC aND BCY IN CALL TO FRMAUG ARE DUMAY WORKSPACES
END IF
RETURN
3 O-&
0 Bedarcen
END

K XSU
LPH1JO,BJO,PHIT, INTPTT, PHIJ, B,

xsggggu;égsafggégésfn.nn.1n¢n.xéan,uxx,uuu.ﬁxuirﬂxt) G 1N THE
Th1e ROUTINE COMPUTES X S_ AND U AT TIME T-SUB- FOR U
TH18 ROUTATA CONTROLLERDETERMINISTIC GAIN CALCULATION. . .,
ST sTE ARt e el i g

.25) BY
%2325%825 as B ASTANTS OUER SOME SUBINTERUAL OF THE SAMPLE TIRE

. -

ZDEC

OoOOON0
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c

c

THAT 1S CHOSEN BY THE USER ...

REAL X (NDIM,NDIM), S(NDIM,NDIM3}, UINDIM,NDIM),
JPMIJO(NDIM, NDIM),BJO(NDIN,NDI®),PHRII(NDIN, NDIP),
$1INTPI1 (NDIM,NDIM),PHIJ(NDIN, NDIM), BJ(NDIM, NDINM),
1TEMP (NDIM, NDIM), TEPPI(NDIN,NDIM), TEMP2(NDIN,NDIM),
1FNINDIM,NOIM), BN (NDIM,NDIM) UXX(NDIN NDIR),
1UUU  (NDIN,NDIN), UXU(NDIN,NDIR),PHIT(NDIM,NDIR)

REAL COML¢1),C0M2(1)
CHARACTER NSG260

common /MAINI/NDIN, NDINMY,COMY

CORMON/NAINZ2/CONE

COMMON ~INOU/ KIN,KOUT,KPUNCH

COMMON /RNTIM/ RNTIME,DELTINM

COMMON /7MAUNS/ NMSG

551353 JJK=1,1000

- »
GIVE USER UP TO 1809 CHANCES TO CHOOSE DIFFERENT SUBINTERVAL LENGTH

SRrTE CKOUT ig)
WRITECKOUT,X)-DO YOU NUISH TO RECONWPUTE X,S,U, BASED ON & DIFFERENT
1 SUBINTERUAL LENGTH, ¥ OR W'
READIKIN,11)MSG
FORMAT(AL)
FORmMATtAL, /) ~
IF (MSG.EGQ. "N’ ITHEN
RETURN

END IF

END IF

12171 B

WRITE(KOUT,X)’ENTER THE NUMBER OF SUBINTERUALS 7C USE IN THE aPORO

IXINATIONS "OF INTEGRALS NEEDED TO CALCULATE X, S, AN U tsuscesT s
) .

1 OR MORE
READ(XIN,X)INTVA

. L
C NOW INITIALIZE UARIABLES REQUIRED IN CALCULATIONS -

13

C
c

Cief.0

g?LL IDNTCIRFN,PHIJSO,CL)

CALL IDNTC(IRFN,X,C1)

CALL IDNT(ICBM,U,C1) -
DO 313 I-i,IRFH

DO 13 J=3,ICBR

BJO(I,J)=0

“6(1,J)0

INITIALIZATION COMPLETE, NOW COMFUTE PHIJ, INTPH] FOR § R
PHI, INTPHI ARE APPROXIMATED BY TAKINS AVERAGE OF VALUES ﬁ?z%zgg vat

C BEGINNING ,END AND £ POINTS IN THZ MIDDLE OF EAZH SUBINTERVAL
C THIS PEANS S SUB SUB_INTERUAL POINTS T0 BE CALCULATED. MWOLEVER, O
¢ NLY 1 CALL TO INTEGRATE ROUTINIS REQUIRED SINCE FM IS A CONSTANT
ML.O N -
SUBINT=DELTIM/(4LINTUAL)
¢ congafgapafsléiﬂzgthuE T
N UPDARTE PHIJO
C FOR EACH SUBINTERUAL DATE PHIJO,BJO

Ci+1.0
DO 371 INTUL=1,4
Do,
FM,DEL,PHII, INTP
CALL nano:(xnrn:xnrn,nuxao,Paxx.%éﬁgfcz)
L EQUATE(PHIJO, TEMP, IRFR, IRFA)

CAL
C PHIJOPHIJO+PHIL

CALL RATY (INTPII, BN, IRFM, IRFN, ICBR, TEMSS)
CALL Hﬁbbl(IRFH.iCBR.BJO,TEHPI.TEHD,EI)
CALL EQUATE(EJQ, TERP, IRFR, ICER)

C  BJO=BJO+INTPIIZER

371 CONTINUE
C NOW g?LgUéﬂTE BJ PNIY

o

NOJ UPDATE X,S,U FOR THIS SUB
XeSUR OF (PHZJflUXK!PﬂIJ!(D{LTIHIlNTUQL)) FOR all JKX

O R N e R

CALL SCALE(PHIJ,PHIJO, IRFM, IRFM,C1)
CALL SCALE(EJ,BJ0,IRFF,ICBR,C1)
PHIJ  NOU AVRILABLE FOR THIS SURINTERUAL

J
RESET PHIJO,LJO

CALL EGUATE(PHIJO,PHII, IRFM, IRF")
call EQUATE(.JO.T&HP!,IR’H ICEM)
INTERUAL
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.

¢ SeSuUn OF ((PHIJTXWXXTBJ4PHIJTIVXL )X (DELTIN/ INTUAL))
CALL MAT4A(PHIJ,UXX, IRFR, IRFN, IRFH, TENP)
¢ TEMPs PHIJT ¥ UXX )
carl Tarl FE oL TR
+ » » 4 H ‘-
LA e o i
X, TENPL, TENP,C1R)
CaLL EOUATE(X,TEMP, IRFN, IRFN) /¢4
¢ ¥ 18 NOU UPDATED FOR THIS SUB-SUB INTERUAL
catt :av«a(puxa,uxu.xn:n,xnrn.1csn.75n91>
caLl ﬂﬁDDl(IRFﬂ.ICBH,TERPE,TEHPI,TEHP.CX)
CAll HADDI(IRFH.ICBH,S.TEﬂP,TEﬂPl.Ciﬁ)
CALL EQUATE(S,TERP1,IRFA,1C3N)
¢ s UPDATE FOR THIS SUB-SUB INTERVAL NOU COMPLETE

¢ - -
c U-S%ﬂ OF((BJT!UXX!BJ‘UUU#BJT!UXU*UXUTZBJ)!(DELTXHIKNTUALE) FOR ALL JK

iv1.9
CALL HﬂT3ﬁ(ICBﬂ,IRFH.BJ.UXX.TEHP)
CALL HﬁDDi(ICBH.ICBH,TEH°,UUU.TEHPX.Cl)
caLl HQT4A(BJ.UXU.ICBH.IRFH.ICBH.TEFP)
caLl HGDDI(ICBH.ICBH.TEHPl.TEH°,TEHP2,C$!
cAaLL ﬂﬁT4ﬂ!UXU.BJ.IC§H.IRFH,ICBH,TEHP)
catl HADDI(ICSH,ICBHoTﬁnPZ.TEHF.TEHPX.Ct)
CALL HADDX(ICBH.ICBH.U.TEHPI.TEHP.C!ﬁl
CALL EOURTE(U,TEﬁP.IC%ﬂ.ICBH)
¢ U URDATB FOR THls SUB-SUB INTERUAL NOW COMPLETE -
a3 CONTIMNUE

10+5

FRCo x(T1) 18 ~

cALL nnn}xo§§.xnrn.xnrn,xo.:zn,xouv.unxn.nnxn)
ytrl)d s

Batt gﬂnTlotu.IC3H,ICBH.IO.(IN.KOUT.KDIﬂ.NDIH)

: . gggl'gAIgiofg,IRFH,ICBH,ID.KiN.KOUT.HDIﬂ,NhIH)
782 CONTINUE
RETURN
END
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Appendix C

Software Considerations

The program, LQGRP, is designed to run interactively
at a remote terminal for the CYBER computer system at the AFIT.
The program memory reguirements far exceed the 65000 octal word
list for using a remote terminal so a special loading technigue,
segmentation, is used. The segmentation loader actively
manages the subroutines so that only those required for a
particular program phase are loaded into the CYBER central
memory. The remainder of the subroutines reside on a disk
file.

One reason this program reguires a lgrge amount of
" memory space 1is merely that state-space system models require
many matrices and vectors to describe them. Another reason
is that the-library of subroutines for basic matrix manipulation
suéh as multiplication, addition and inversion, as well as
tbose used for more complex operations such as integration
and solving the matrix Riccati equation require all matrix
arguments to be square and to have the same declared size
{Refs 4 and 5). Because of this, a large amount of memory
space is required even though it might otherwise be unnecessary
considering that the number of inputs and outputs in many
physical systems is generally less than the number of states.
For example, in the model used in this thesis there is one
input and one output and five states. However, in order to

use Kleinman's routines  all matrices (F_, B G,,...} must
~t’ =2

t’ =t
be declared square and at least of dimension 5. Thus, just

for B, and H, 20 memory locations are never used.
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In additior: to the fact that Kleinman's routine
quire unnecessary storage space, some of the specialized sofz:-

ware routines for solving the matrix Riccati equations require

that come of the eguations in the body of this thesis be re-
errenged in order to use the sofiware. Egs (2.12) and {z.22)

through (2.98) encompass the most significant modifications.
« The Riccati equation solver, subroutine MRIC, is de-

signe¢ for controller calculations and thus solves Eq (2.1L4)

directly. To selve Eq (2.13) using MRIC, it is imporzant to

rote that MRIC transposes the F matrix in the call stztement.
Therefore, pefore using KRIC to solve Eq (2.13), the I matrix
must te transposed dbefore the call to MRIC.

The modifications to use subroutine DRIC to solve

+ must

e

Zgs (2.92) through (2.98) are more extensive. First,

be recognized that DRIC colves for the sieady-state solution

of ;C defined in Eq (2.106). It is also necessary to note

that DRIC will not solve for gc with & nen-zero S matrix

(defined in Eq (2.97)) unless the proper transformation is

.

wsed this transformation will be exprlained later in zhlis

For thes case of constant controller model matrices,
stetionary noise inputs anc constant cost-weighting rmairices,
Zgs (2.92) through (2.98) can be integrated directly or they

czrn. te solved using the equivalent formes of the equzilons
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1. h
- i+l
Bg(ty)= [ 7T 2y, T AT B (c.2)

1
Q. (t )‘—.vfti“l 8(t...,7)caal 8l (t T) af (C.3)
S¢tt)T T BURe TR E 2 (0., -3
i
it [ 874, 1) W 3(t, t.) d (.4
‘—i'ft 270, ) W, 2, %) dt C.4)
. i
%,
_ (fit1,5T = ,
Ut )= [_t (B0t %) Wy Bty t5) + By
i
+ BTt ty) W+ Wy B(t, T )at (C.5)
S(t, )= Fis1 $7(t, t.) W B(t, t.)
=rioT ];. (— YL omxx =N A
1
T T
+E (1, 1) ﬂxu) dt (C.6)
vhere -
_ 1
B(t, t)= ft_ 8(t,T) a® B, (C.7)
1

.The forms in Egs (C.1) through (C.7) are used because they

can be solved using the Kleinman subroutines’whereas forms
in Egs (2.92) through (2.98) cannot. It is necessary to
make approximations to &(t, ti) and E(t. ti) in order to solve
zgs (C.4) through (C.6) using the Kleinmen routines.

The approximation that is used breaks ur the interval
from ti to ti+1 into N, equal subintervals. During each sub-
interval, 2(t, t.) and (%, t;) are treated as constants.

Smaller subtintervals provide better approximation but require

more execution time, therefore a tradeoff is required. The

154




Ay,

subroutine that accomplishes the calculations of %(t.), S(<.,

and Q(ti) allows the user to input the desired number of sut-

intervals, N. The routine then displays g(ti), g(ti) and

-

§(ti) for that N, and allows the user to change the value of

-

N ant recom T TE.
As stated above, constant values will be used over
sach subinterval for &(t, t,) and B(t, t;). The constant

th

values used for the j subinterval, gj and gj respectively,

are the average-values of Z(t, t;) and B(t, t;) for the jth
subinterval. g(t, t.) and B(t, ti) are calculated at the be-
gin n¢ng and ena of the jJ th subintervel as well as a2z Thnree
equally spaced points between the beginning and the end.
These are the values that are averageg to form gj and éj'
Thus, for at= (ti+1 - ti)

2;=|everage of 2(t, t;) for all te [ti + (j - 1) as,

‘L‘,l + JA_t” (C.8;
N )
5.=|zverage of 3(t, t.) for all te [t. + (i - 1) at,
—d 1 i X
ty o+ Atll (c.9;

The Kleinman subroutine DSCRT simultaneously returns &(t, C.

-
9

ard j- g€(t, ) d7 and is the only major matrix subroutine
o

neeced in order to compute &. and B..

J
tihen the approximations just described for gj and 2.

v

i

are used, Egs (C.4) through (C.6) become
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N ™ ' '
2(t. )= (&, wW._ . d.)at (C.1¢;
. =10 jcl(—a =XX —J>N'
ng=§ @Tgxg+ww+zTMu+ﬁu@)ﬂ
j=1 \ 7Y / g IR (c.11)
N
- 2
S(t;) j=1 (gj Wox Ej + gj ."l’xu) ﬁi (C.12)
- Cnce values have been obtained for g(ti+1, ti), gd(ti),

Q‘(ti)’ g(ti), Q(ti) and §(ti) it is still necessary to trans-
rmi Zgs (C.1) &hrough (C.6) in order to use DRIC, the mztrix
Riccati equation solver. The transformation of the 1Q sampled-

éeta controller is (Refs 7 and 10)

where
(
3 (b ., t.)= B(% £.) - B.(t.) U . ) sT(t.) (c.1be
= i+1’ i =VYYi+1t i =q‘"i’ = i’ = ic AT
w' ()= ulte) + 07 hee,) sTee) x(+.) (C.15)
= i =*"i = i’ = i’ =71 T
Ilow the quadratic cost equation that is minimized by
ulty; is
v 1 T
£« = 3 X (+N+1) Kf E(tN_,,l)
N T T \
o T e 20 x(e) + uTley) Ui ] €16)
1=C -
wrhere
- o -1 s <T,. -
j_‘(t;)z ;';(‘l> - i(bl/ ! (-tl/ _S_ (bl) (C-l )
( Tow Eges (2.105) and (2.106) can be put into the format of

DRIC to solve for steady-state values of Ké and gg. In the
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notation used in this thesis DRIC solves

K'= g7 3} (1+8yut e« )'1 I+ K (C.18)

= == = =

which can be obtained from Egs (2.105) and (2.106) by setting

§(ti)= 0 and using the matrix inversion (Ref 8)

( -y oz YT ewl z)= (1 +yTowl g)'l (C.19)

and defining §T= B, W= U, Z= ET K. and I to be the identity

1=

matrix. Note that (C.19) holds only when W (U in this case)
is positive definite.
T

"Once gé is computed using the results from DRIC, gé

can be computed from

' -1 T
* = *
Gi=GX +U " S ‘ (C.20)

Note, for Exu # 0 in the continuous-time case, the trans-
formation déscribed in Egs {C.13) through (C.17) and (C.20)
can be used if, in thoscequations, the ¥s are replaced by Fs,
gds by Bs and Ss by Exus. Now Egs (2.11) and_(2.12) can be
used for the gé of the transformed system.

As can be seen from the foregoing discussion, while
Kleinman's matrix software routines are very powerful, care
must be taken in order to arrange the equations properly so
that they match the arrangements used in these routines

(Ref 5).
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Appendix D

Software Performance Verification

To verify the performance of the software developed

to support this thesis, several test cases with known results

were used.

For the continuous-time software, 3 test cases were
wsed. The first is example 14.25 in Maybeck (Ref 10). The
second is example 5.3 in Kwakernaak and Sivan (Ref 13). The
third is the exemple  given by Doyle and Stein (Ref 2). The
details of these examples appear in Table D.1. 1In all cases,
the truth model and the controller design model are eguival-
ent. .

For the sampled-data software, the same three test
cases are used. The intent is to show that as the sample

veriod decreases, the steady-state value of P (t.) &
T - XXy 2
proaches the steady-state value of its continuous-time counter-

‘rd

Table D.2 presents the results of the-softweare verifi-

ceztion run for both the continuous-time IQG regulator and the

discretized continuous-time IQG regulator. The results of

the continuous~time case are in agreement with the sources of
o the examples (Refs 2 and 7). By examining Table D.2, i%t is
evident that as the sample period decreased, the perfermance
of the discretized controllers approached that of their con-
tinuous-time counterparts. Alsoc note in the table that for
a sufficiently large sample period, the discretized control-

(f lers do not approach the steady-~state values of their contin-

uous-time counterparts and may even diverge. This is ex-
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rected since the approxirazions used in discretization are not
valid for large sample periods.

Table D.3 presents the results of the software verifi-
ceétlon runs for the sampled-data 1QG regulator software. As
in the discretized continuous-time case presented in Table

D.2, the performance of the sampled-data controllers approaches

fhat of their counterpart continuous-time controller for

sufficiently small sample periods.
y I
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TABLE

D.l

Test Cases for Software Performance Verification

Test Case 1 (Ex 14.25 in Maybeck (Refl10) with T=2)

Expected Program Outputs

Program Inputs
F= [-C.5] G= [1]
B= [0.5] H= [1]
Q= [2] R= 3]
P=[ 1] x, =[0]
W=y °
we=[o] Wer= (5]

Kf=[ C°L'r571

G*=[0.5)

m, = m,=[0]

B, =[1.79]

P, [ 0.1045]

ct

n

Test Case 2 (Example 5.3

in Kwakernaak (Ref 7))

Program Inputs

Expected Program Outputs

0 1 0
o- |
0 -4.6 0.1

0 E=( 1
B=
- [0.787J R=[ 1077]
(

_ [40.36} )
K =
=T |814.3

§g= [ 223.6 18.69])

_ T

Q= 10] . =[ C ] m,= [ 0 _]
1 01 %% lo 000004562 o
P = Po= '
°1 ¢ 1 ' [1 o] t 0 - 0.00619 | |
K= [0.00002) 7 o ol B=[z.2¢]
iy (0]
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TLRIE D.1 (con't)

Test Case 3 (Example in Doyle and Stein,
Without Robustness Recovery, (Ref 2))

Expected Program

Frogram Inputs Outputs
° 1 0 Ke=[30  -50]
F= [ B= f
- - *=
3 L 1 ex=[50  10]
- [ 35 H= [2 1] m,= [0 o]
G= t
-61 R= [1]
m= [0]
a= [1] -x,= [0 o]
0 221 -613
1 0 2800 473.3 P =
o | O i T H72.3 80 -613 2073
N W = _ L
Vo= (1] w..= [o] B[4 (1007]
_
Test Case 4 (Same as Test Case 3 Except that
DJoyle and Stein Technique is Applied)
N Expected Progren
Program Inputs Outputs
all program input matrices same as
for test case 3. Then when V= I and
0= 100 K= [26.8 - #0.2]"7
236 -613
=x, - .
(37022 A
q”= 50C Ky L20.4 - 17.7]
268 -613
] -613 1500
q“= 10000 Ke= [16.7 - 1.9]"
285 -613
Py =
t [-613 1360

l61
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aprendix I

Users Manual for
Linear Quadratic Gaussian Regulator Ferformance (IQSRF)

LS

The pdfpose of this manual is to describe how to use

IQGRP to design and test Linear Quadratianaussian Regulzators.
The software provides the capability to enhance the robust-
ness of both continuous-time and sampled-data IQG regulators.
The techniques used are described in a paper by J.C. Doyle
and Stein (Ref 2),in_Maybeck section 14.5 (Ref 10),and in the
body of this thesis.

Input

The program always begins in the inpu£ mod-~ ., Fér the
first run through the program, a list of input/output options
(1-6) and a_list of options %o designaté which vector/array
is to be inbut or output (1-21), is provided. These cptions
are presented in Table E.1. Note that when entering Et or
5& using options 11 and 13 respectively, the 'value entered
may be in either continuous-time or sampled—data forme<. User
response to prompts &t other places in LQGRP 1s used <c distin-
guish between the formats.

During the input mode of the program, the user selects
the desired vector/array to be input, then follows promrts

atout entering I/C ortions, dimensions and vector/arrey ele-

=]

mer.ts. Note that option 18 allows 21l controller model mat-
rices to be equated to their truth model counterparts. The
number of deterministic states in the system models must also

be input at this time (see discussion under 1QG Regulator
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. Input Routine Options

Matrix Vector Selection Cptions

Option

runciion

L owa

[ TN BN © AN VAN

11
12

b
AWV

-
N \n &

[y

-3

=
o

oy
O

z2C

Truth model matr

By
Truth model Bt matrix
Truth model Gt matrix
Truth model Ht matrix
Controlder design model Ec matrix
Controller desigmn model QC matrix
Controller cdesign model gc matrix
Controller design model H, matrix

Truth model initizl covariance matrix, E|
Truth model input noise strength matrix, 94
Truth model measurement noise. strength matrix, Bt

Controller design model input noise strength matrix,

&
Cortrolier desigr model measurement noise strength
matrix, gc

Truth model initial state vector, x

o

Control cost—weighting matrix, Wo.

State cost-weighting matrix, Exx -

Crecesg {state-corirol, cost-weighting matriz, Lxu

Equate F E G E R hei th

Eau ¢ Tov Bov Zov Eoo QC, R, to theilr truth model
counterpars

Terminate input mode, start regulator development
mode

Store &1l matrices/vectors from options 1-17 to
local file Tape?

/vectors for options 1-17 from
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TABIE E.1 (con't)

e ——

Input/Output Options

. —

Option Action Taken
0 Terminate main program
1 Read entire array (row by row) or vector
1 2 Read entire array (row by row) or vector

and then print it

Read selected array or vector elements

N 4 Read selected array or vector elements
f ' and then print them
[
B 5 Print the entire array or vector
6 or Return to calling program without taking .
greater any action
\
'

{
N,

{
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2]

Set-Uz.

Crice & <ruth model and controller model have ueen com-
rletely entered and the cost-weighting matrices have been er-
tered, optiog 20 will store all this datg to local file Tape?
for future uce. Crnce & file TzreT has been created (and vos-
sibly stored as a permanent file) option 21 can be used to
read data from it if it is first copied into a local file
Tape8. Note any number of models can be entered during the
input mode and stored to Tape? for future reference.

Note zny options 1-18, 20 znd 21 can be executed any
number of times during the input mode. This zllows for cherg-
es to be made teo specific vector/arrays in case an error :is
made. Option 19 terminates the input mode.

When the input mode is re—ente&ed at the terminatior

of the performance anzlysis rouztine, any, 2ll or none of ilhs

ortions 1-18, 20, 21 may be executed.

IQGERr mzy te aborted gracefully while in the input
mode. Simply choosing any option 1-17 and entering a zero
for the I/C ortion and (any number for <he dimension requirsd,

equired) will accomplish the abort.

}<
+
3]

QG Regulator Set-ir

virg the input moce, the progrem enters the
g T ’ Prog

m

Upon 1le

or set-up mode. A%t ihis point the user must chccose

ct

&G regulsa
either a continuous-time controller or a sampled-data control-
ler. Note, there is provision in IQGRP to allow deterministic
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(ie, states which are not contéolled by input noise) states

to be part of the system description. Note that such states
should be the first states in the state vector when entering
system model matrices in the input mode. .The deterministic
states are removed from the system controller design model
before Kalman filter gain .calculation. The Kalman filter gain
cbrresponding to those states deleted from the XKalman filter
gain calculations is set to zero.

Continuous-~Time Controller

If the continuous~-time controller is chosen, the user

has the option ¢f calculating and displaying the eigenvalues

" of both the truth model and controller model F matrices, of

T

modifying the G Q G~ (used in the matrix Riccati egquation for

calculatingthe steady-state P matrix), and choosing the total
run time and the time increment between integration steps.

The modification to G Q QT referred to above was derived by
Doyle and sStein (Ref 1). Simply, it replaces G Q QT by Q(q)
where

2 BV gT

o@=ggc’ +q
q2 is a scalar design parameter such that g-»« causes the LQG
regulator to regain asymptotically the robustness character-
istics of a full-state optimal deterministic feedback LQ con-
troller. V is also a design parameter that must be any sym-
metric positive definite m x m matrix where m is the number

of inputs to the system input matrix B. Note, V= I is a good

first choice when there is no reason to weight the addition
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of pseudo-noise to selected states. The filter poles, LQ
controller poles, and the LQG controller poles are computed if

the user wants to examine them.

Sampled-Data Controller

For sampled-data controllers, two basic options are
anilable. The first merely discretizes a continuous~time
controller. The second developes a sampled-data controller
based on the matrices stored during the input mode.

In the first option, a continuous-time LQG regulator
is set-up (see previous section) and is then discretized ucing
first order approximations. Note that when entering the time
increment for the continuous-time controller.to be diséretized,
the time increment will become the saﬁple-period of the discrete-
time controller.

In the second option, an appropriate sampled-data con-
troller is set up using the values entered during the input mode.
In this option an approximation to the value§ of the continuous-
time cost-weighting matrices, X{(t.), Ult;) and S(t;) for
sampled-data controllers is made. A discussion of this
approximation is in Appendix C. Briefly, it entails using
constant values for certain matrices for each of a number
of subintervals of the sample-period. The more subintervals,
the better the approximations, but the more computer time
reguired..

Also in the second option, there are two design options
for increasing robustness properties of the controller. The
first is a discretized version of the Doyle and Stein technique
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described previously in the continuous-time section. The
second option for increasing robustness involves picking K,
the Kalman filter gain directly such that

-1

kK=q & By W

4
where ¥ is the controller design model state transition matrix,
By is the discrete-time input matrix and W is any nonsingular

m X m matrix where m is the number of inputs to the system. The

user has the option of picking any W or of calculating

W= (H 2‘1 gd)-l as in Maybeck (Ref 10). As in the continuous-
time case, g is.é sc;lar design parameter that, as g-»«, asympto-
tically causes the LQG regulator to recover the robustness
characteristics of the full-state feedback optimal deterministic
LQ regulator. As in the continuous time case the filter poles,

LQ controller poles and the LQG regulator poles are computed if

the user wants to examine them.

-

Performance Analysis

After the LQG regulators are properly formatted by the
éforementioned routines, a covariance analysis is performed.
This analysis is described in the body of the thesis. First a
set of augmented system matrices are formed and then the
performance analysis begins. Egs (E.1) through (E.8) describe

the augmented system used in the performance analysis.

. _ . T ,.T T
2= By %5 + By ¥g * Gy ¥y 7 %57 e X (E.1)
where
Fe * By Scz B¢ Be Sex
£, = (E.2)
Bez He Ee
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B G
- | =t —cy = s
Ea-[ ] (L'Jl
,' N
| G = rgt Et gcz (E.4°
2 o 1
o4
’ [ W
w = "T‘] (E.5)
‘ - ~ LK
: xt
[Q. . C .
Q=| " } (E.6)
o R,
f and then
| mxa<t>= g,(t, t) m, (%)
’ t
| s [t B.(t, 1) B, (1) yy(x) av (E.7)
- (o]
e T .
"X,Xa(b)— ga(tv .t0> 'EX,..X (tO) _§_a('t: to/
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_ ff ) e e 6 BGic) ar (E8
. o .

ote that in Egs (E.1) through (E.8)

for sampled-data systems

Fs are replaced by &s and other continuous-time matrices are

< replaced by their equivalent discrete-time counterparts.
P

- system matrices.

i The user has the option of printing out the augmented

The user also has the option of specifying

hov many time increments there should be between plot points

and points printed at the *erminal for Ex and
a

r !
=uu

~re co-

variance of the augmented system and the controller, respec-

tively.
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Trne plot points are formatted and stored to a series
of loczl files as follows:

m, .-= Tape 12
-~ Tape 13
m. -- Tape 14
- Tape 15

where m is thé mean of the truth model states, P is the
Xt *t%¢

covariance of the truth model state ( only diagonal entries
are written to Tape 13), m, is the mean of the controls gen-
erated and Euu is the covariance of the controls generated
(only diagonal entries are written to Tape 15).

Fach performance analysis run is tagged with a run
number, tot;l time, sample-time and the dimension of the state
vector or control vector as appropriate. This is the first

record of information written to the local files, Tape 12

.Tape 15 for each run. The last two records written to these

files for each run contain the minimum value of the data array
and a scale factor; both are needed for plotting.
Upon exit from the performance analysis routine, the

program re-enters the input mode and changes the run number.

Plotting
Ir. order to plot the data, 1t is necessary to &bort
the IQGRP program and execute the plotting program, MYPLOT

on a terminal connected to an HF plotter. If the HP plotter
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is unavailable or unacceptable<for some reason, MYCLPT will
generate a Calcomp plot file at a terminal that can be routed
to the Calcomp blotter.
Either MYPLOT or MYCLPT reads data-formatted by the
performance analysis routine off any local file, Tape xx
(where xx is 12, 13, 14, or 15). ©Note that if the user wishes
to do any manipulation of the data tapes befbre using this
program, the result can be stored on any tape numbered 1
through 99. This nuﬁber can be used in place of 12-15 as
indicated earlier. Before plotting it gives the user the
option to preview the data. Note, when previewing, the user
should check to be sure the last two data entries are the
minimum value and the scale factor, respectively.
After each plot, the user has the option to abort,
plot a different variable (ie, xt2 instead of xtl), read and .
plot the next run of data from the same tape, cr read and
plot data from a new tape. All options executed in either Q

program are results of user inputs to self-explanatory program

prompts printed at the terminal.
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2.

- 3.
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A Typical LQG Regulator Performance Analysis Session
with LQGRP and MYPLOT or MYCLPT

Preliminaries

A. At the beginning of the program it is necessary
to have available for input the matrices listed
in Table E.l, options 1 through 17 (Could all be
on local file Tape8 saved from last run using
option 20). The number of deterministic states
in the model is also needed. (if any, they must
be the states listed first in the system descrip-
tion).

B. Attach LQGRP.

C. Be sure the INPUT and OUTPUT files are connected
to the terminal.

D. In response to COMMAND type LQGRP.

Input Mode- Always begins with a printout of the "run
number" (got here from 1.D above or 4 below)

A. Respond to prompts about entering matrices (note
the information in Table E.l1 is printed at the
beginning of the first run of LQGRP)

B. If desired, use option 20 to save all matrices on
local file Tzpe7.

Cl. Terminate input mode, using option 19
C2. Terminate program, using any option 1-17 and 1/0

option 0 (and any dimension if redquired by prompt,
see section 5 below)

Regulator Setup Mode (got here from 2.Cl above)

A. In response to prompt type
1. C- for continuous-time LQG controller
2. D- for discretized continuous-time or sampled-
data LQG controller.

Bl. (got here from 3.A.1)

1. Respond to self-explanatory prompts (note time
increment required by prompt controls maximum
number of points from time 0 to run time and
does not affect the accuracy of any results.

B2. (got here from 3.A.2)
1. 1In response to prompt, choose to
a. Discretize a continuous-time controller or
b. Choose a sampled-data controller
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2a. (got here from 3.B2.1.a)

1. Note that when entering time increment for
continuous~time controller it will become
the sample-time of the discretized con-

. troller and affect stability.

. Follow the remaining prompts.
got herc from 3.B2.1.b)

20.
Answer prompts

In response to prompt about subinterval
for calculating X, S and U, remember a
better approximation is obtained for more
subintervals but that this requires more

b computer time.

3. TFollow remaining self-explanatory prompts.

R~

Performance Analysis Mode (got here from 3.B1 or 3.B2)

A,

-

Be careful in selecting number of prints at termi-
nal (in response to prompts) of m_, , m_, P. and
P since the printouts reguire a u *a
a’'significant amount of time and paper.

- Be careful in choosing the number of points 1o go

on the plot files {in response to'prompt) since
the number of points significantly affects plot-
ting times. (For example,-100 points plotted on
the HP plotter takes about 5 minutes, 200 points
approximately 10 minutes etec..... ith 20C points
Lo be plotted, there will be more than 20 points
plotted per inch since the time &xis of the plot
is scaled to 7% inches).

Data File Plotting/Storing (got here from 2.C2)

I

&

21.

BZ.

If data was saved on Tape? using opition 20, now
is the time to create a vermanent-file of this
data (see terminzl operations manuals,

I1f you don't have time to plot the cdzza on local
files Tapel2, Tapel3, Tapeld and Tape 15, now is
the time to create permanent files for this data.

Vant to plot data from todays run or from previous
runs stored on permanent file.
1. Make sure files are rewound before use
2. hkittach copry of WMYPLOT or NYCLPT depending on
where you want tnhe vplots made.
a, Type MYPLOT or MYCLFT in recponse to "CON-
MAND ",
o, Follow prompIe (ncTe Calconr tleotisr a3
AFIT can only handgle 5 plots per plot file,
It is necessary to terminate MYCLPT (fol-
lowing self-explanatory prompts) after
each set of 5 plots is created. Then the
plot file should be routed to the plotter,

vy
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and +then MYCLPT can be re-entered for the
rexs 5 plots).

{ c. If you are using NYCTPT, the plot file

} muss te routed to the plotter at the termi-

! . nation of MYCLPT.

|
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sppendix F

ivollo Model Performance Data

This appendix contains additional mean and covariance

plots used to support the results and conclusion of Crapter

III.
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